Fr. 109.00

Blowup for Nonlinear Hyperbolic Equations

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

The content of this book corresponds to a one-semester course taught at the University of Paris-Sud (Orsay) in the spring 1994. It is accessible to students or researchers with a basic elementary knowledge of Partial Dif ferential Equations, especially of hyperbolic PDE (Cauchy problem, wave operator, energy inequality, finite speed of propagation, symmetric systems, etc.). This course is not some final encyclopedic reference gathering all avail able results. We tried instead to provide a short synthetic view of what we believe are the main results obtained so far, with self-contained proofs. In fact, many of the most important questions in the field are still completely open, and we hope that this monograph will give young mathe maticians the desire to perform further research. The bibliography, restricted to papers where blowup is explicitly dis cussed, is the only part we tried to make as complete as possible (despite the new preprints circulating everyday) j the references are generally not mentioned in the text, but in the Notes at the end of each chapter. Basic references corresponding best to the content of these Notes are the books by Courant and Friedrichs [CFr], Hormander [HoI] and [Ho2], Majda [Ma] and Smoller [Sm], and the survey papers by John [J06], Strauss [St] and Zuily [Zu].

List of contents

I. The Two Basic Blowup Mechanisms.- A. The ODE mechanism.- B. The geometric blowup mechanism.- C. Combinations of the two mechanisms.- Notes.- II. First Concepts on Global Cauchy Problems.- 1. Short time existence.- 2. Lifespan and blowup criterion.- 3. Blowup or not? Functional methods.- 4. Blowup or not? Comparison and averaging methods.- Notes.- III. Semilinear Wave Equations.- 1. Semilinear blowup criteria.- 2. Maximal influence domain.- 3. Maximal influence domains for weak solutions.- 4. Blowup rates at the boundary of the maximal influence domain.- 5. An example of a sharp estimate of the lifespan.- Notes.- IV. Quasilinear Systems in One Space Dimension.- 1. The scalar case.- 2. Riemann invariants, simple waves, and L1-boundedness.- 3. The case of 2 × 2 systems.- 4. General systems with small data.- 5. Rotationally invariant wave equations.- Notes.- V. Nonlinear Geometrical Optics and Applications.- 1. Quasilinear systems in one space dimension.- 2. Quasilinear wave equations.- 3. Further results on the wave equation.- Notes.

Product details

Authors Serge Alinhac
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 17.12.2012
 
EAN 9781461275886
ISBN 978-1-4612-7588-6
No. of pages 113
Dimensions 188 mm x 235 mm x 236 mm
Weight 223 g
Illustrations 113 p.
Series Progress in Nonlinear Differential Equations and Their Applications
Progress in Nonlinear Differential Equations and Their Applications
Subject Natural sciences, medicine, IT, technology > Mathematics > Analysis

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.