Fr. 69.00

Fatou Type Theorems - Maximal Functions and Approach Regions

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

A basic principle governing the boundary behaviour of holomorphic func tions (and harmonic functions) is this: Under certain growth conditions, for almost every point in the boundary of the domain, these functions ad mit a boundary limit, if we approach the bounda-ry point within certain approach regions. For example, for bounded harmonic functions in the open unit disc, the natural approach regions are nontangential triangles with one vertex in the boundary point, and entirely contained in the disc [Fat06]. In fact, these natural approach regions are optimal, in the sense that convergence will fail if we approach the boundary inside larger regions, having a higher order of contact with the boundary. The first theorem of this sort is due to J. E. Littlewood [Lit27], who proved that if we replace a nontangential region with the rotates of any fixed tangential curve, then convergence fails. In 1984, A. Nagel and E. M. Stein proved that in Euclidean half spaces (and the unit disc) there are in effect regions of convergence that are not nontangential: These larger approach regions contain tangential sequences (as opposed to tangential curves). The phenomenon discovered by Nagel and Stein indicates that the boundary behaviour of ho)omor phic functions (and harmonic functions), in theorems of Fatou type, is regulated by a second principle, which predicts the existence of regions of convergence that are sequentially larger than the natural ones.

List of contents

I Background.- 1 Prelude.- 2 Preliminary Results.- 3 The Geometric Contexts.- II Exotic Approach Regions.- 4 Approach Regions for Trees.- 5 Embedded Trees.- 6 Applications.- Notes.- List of Figures.- Guide to Notation.

Product details

Authors F Di Biase, F. Di Biase
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 17.12.2012
 
EAN 9781461274964
ISBN 978-1-4612-7496-4
No. of pages 154
Dimensions 176 mm x 11 mm x 236 mm
Weight 281 g
Illustrations XII, 154 p.
Series Progress in Mathematics
Progress in Mathematics
Subject Natural sciences, medicine, IT, technology > Mathematics > Analysis

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.