Fr. 78.00

Kategorien - Begriffssprache und mathematische Theorie

German · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Die Theorie der Kategorien hat sich rasch entwickelt. Die Begriffe und Methoden, de ren Behandlung sich das vorliegende Buch zum Ziel setzt, lassen sich jetzt nutzbringend von Mathematikern anwenden, die auf verschiedenen anderen Gebieten der Mathematik forschen. Die Darstellung erfolgt in mehreren Stufen. Auf der ersten Stufe liefern Ka tegorien eine brauchbare Begriffssprache, der die Begriffe "Kategorie", "Funktor", "nattirliche Transformation", "Kontravarianz" und "Funktorkategorie" zugrunde liegen; sie werden - zusammen mit geeigneten Beispielen - in den Kapiteln I und II behandelt. Der fundament ale Begriff eines Paares adjungierter Funktoren schlieBt sich an, der in vielen, im wesentlichen einander gleichwertigen Formen auftritt: als universelle Kon struktion, als Limes und Colimes sowie als Paar von Funktoren - zusammen mit einem nattirlichen Isomorphismus zwischen entsprechenden Pfeilmengen. AIle diese Formen und ihre wechselseitigen Beziehungen werden in den Kapiteln III - V untersucht. Man konnte sagen: "Adjungierte Funktoren treten tiberall auf". Der fundamentale Begriff in der Theorie der Kategorien ist derjenige eines Monoids, d. h. einer Menge mit einer zweistelligen Verkntipfung (Multiplikation), die assoziativ ist und eine Einheit besitzt. Eine Kategorie selbst HiBt sich als eine Art verallgemei nertes Monoid auffassen. In den Kapiteln VI und VII werden dieser Begriff und seine Verallgemeinerungen studiert; seine enge Beziehung zu Paaren adjungierter Funktoren erhellt die Begriffsbildungen der universellen Algebra und gipfelt im Satz von Beck, der Kategorien von Algebren charakterisiert.

List of contents

I. Kategorien, Funktoren und natürliche Transformationen.- 1. Axiome für Kategorien.- 2. Kategorien.- 3. Funktoren.- 4. Natürliche Transformationen.- 5. Monomorphe und epimorphe Pfeile; Nullobjekte.- 6. Grundlegungen.- 7. Große Kategorien.- 8. Horn- Mengen.- II. Konstruktionen mit Kategorien.- 1. Dualität.- 2. Kontravarianz und duale Kategorien.- 3. Produkte von Kategorien.- 4. Funktorkategorien.- 5. Die Kategorie aller Kategorien.- 6. Komma-Kategorien.- 7. Graphen und freie Kategorien.- 8. Quotienten von Kategorien.- III. Universelle Konstruktionen und Limites.- 1. Universelle Pfeile.- 2. Das Yoneda-Lemma.- 3. Coprodukte und Colimites.- 4. Produkte und Limites.- 5. Kategorien mit endlichen Produkten.- 6. Gruppen in Kategorien.- IV. Adjungierte Funktoren.- 1. Adjunktionen.- 2. Beispiele für Adjungierte.- 3. Reflektive Unterkategorien.- 4. Äquivalenz von Kategorien.- 5. Adjungierte für Vorordnungen.- 6. Kartesisch abgeschlossene Kategorien.- 7. Transformation von Adjungierten.- 8. Komposition von Adjungierten.- V. Limites.- 1 Erzeugung von Limites.- 2. Existenzkriterien für Limites, die Produkte und Differenzkerne benutzen.- 3. Limites mit Parametern.- 4. Respektierung von Limites.- 5. Verhalten von Adjungierten auf Limites.- 6. Der Hauptsatz von Freyd für adjungierte Funktoren.- 7. Unterobjekte und Generatoren.- 8. Der spezielle Hauptsatz für adjungierte Funktoren.- 9. Adjungierte in der Topologie.- VI. Monaden und Algebren.- 1 Monaden über einer Kategorie.- 2. Algebren zu einer gegebenen Monade.- 3. Der Vergleich mit Algebren.- 4. Worte und freie Halbgruppen.- 5. Freie Algebren zu einer gegebenen Monade.- 6. Aufspaltende Differenzcokerne.- 7. Der Satz von Beck.- 8. "Algebren sind T-Algebren".- 9. Kompakte Hausdorffsehe Räume.- VII. Monoide.- 1.Monoidale Kategorien.- 2. Kohärenz.- 3. Monoide.- 4. Operationen.- 5. Die simpliziale Kategorie.- 6. Monaden und Homologie.- 7. Abgeschlossene Kategorien.- 8. Kompakt erzeugte Räume.- 9. Schleifenräume und Einhängungen.- VIII. Abelsche Kategorien.- 1. Kerne und Cokerne.- 2. Additive Kategorien.- 3. Abelsche Kategorien.- 4. Diagrammlemmata.- IX. Spezielle Limites.- 1. Filtrierende Limites.- 2. Vertauschung von Limites.- 3. Finale Funktoren.- 4. Diagonalnatürlichkeit.- 5. Enden.- 6. Coenden.- 7. Enden mit Parametern.- X. Kan-Erweiterungen.- 1. Adjungierte und Limites.- 2. Schwach universelle Konstruktionen.- 3. Die Kan-Erweiterung.- 4. Kan-Erweiterungen als Coenden.- 5. Punktweise Kan-Erweiterungen.- 6. Dichte Funktoren.- 7. Interpretation aller Begriffe als Kan-Erweiterungen.

Product details

Authors S MacLane, S. Maclane
Assisted by K. Schürger (Translation)
Publisher Springer, Berlin
 
Languages German
Product format Paperback / Softback
Released 05.12.2012
 
EAN 9783540056348
ISBN 978-3-540-05634-8
No. of pages 298
Dimensions 179 mm x 255 mm x 19 mm
Weight 588 g
Illustrations VIII, 298 S.
Series Hochschultext
Hochschultext
Hochschultexte / Universitexts
Subjects Natural sciences, medicine, IT, technology > Mathematics

Mathematik, B, Topologie, Mathematics, Mathematics and Statistics, Mathematics, general, Morphismus

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.