Fr. 71.00

Vektorautokorrelationen stochastischer Prozesse und die Spezifikation von ARMA-Modellen

German · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Die Arbeit beschäftigt sich mit der Spezifikation der Ordnung von ARMA-Modellen mit Hilfe des Konzepts der Vektorautokorrelationen. Diese sind lineare Abhängigkeitsmaße zwischen Segmenten eines stochastischen Prozesses und lassen sich als direkte multivariate Verallgemeinerung der in der Praxis der Zeitreihenanalyse sehr verbreiteten Korrelationsmaße auffassen. Die Verteilung der korrespondierenden Stichprobenkenngrößen wird untersucht. Über die Herleitung der asymptotischen Verteilung der Stichprobenvektorautokorrelationen hinaus wird ein alternatives, auf dem Bootstrap-Prinzip aufbauendes Verfahren entwickelt, mit dem bessere Aussagen über die exakte Verteilung der Stichprobenvektorautokorrelationen erzielt werden. Erweiterungen des Ansatzes der Vektorautokorrelationen zur Behandlung grenzstationärer Prozesse werden vorgestellt. Zudem werden die Beziehungen zwischen Vektorautokorrelationen und einer Reihe anderer, in der Literatur vorgeschlagenen, Verfahren zur Prozeßidentifikation untersucht.

List of contents

1 Vektorautokorrelationen stochastischer Prozesse.- 1.1 Der Begriff der Vektorautokorrelationen.- 1.2 Vektorautokorrelationen und ARMA-Prozesse.- 2 Stichprobenvektorautokorrelationen.- 2.1 Schätzung der Vektorautokorrelationen.- 2.2 Rekursionsformeln zur Berechnung der empirischen Vektorautokorrelationen.- 3 Asymptotische Verteilung der Stichprobenvektorautokorrelationen.- 3.1 Vorbemerkung.- 3.2 Herleitung der asymptotischen Verteilung.- 3.3 Ein Algorithmus zur konsistenten Schätzung der asymptotischen Standardabweichung der Stichprobenvektorautokorrelationen.- 3.4 Einige abschliessende Anmerkungen zur asymptotischen Verteilung der Stichprobenvektorkorrelationen im Falle eines ARMA(p,q)-Prozesses.- 4 Bootstrap-Schätzung der Verteilung der Stichprobenvektorautokorrelationen.- 4.1 Einführende Bemerkungen zum Bootstrap-Prinzip und zur Bootstrap-Inferenz.- 4.2 Schätzung der unbekannten Verteilungsfunktion der Zufallsschocks.- 4.3 Übersichtliche Darstellung des Bootstrap-Algorithmus zur Approximation der Verteilung der Stichprobenvektorautokorrelationen.- 4.4 Die Konsistenz der Bootstrap-Schätzung.- 4.5 Die asymptotische Validität des Verfahrens.- 5 Simulationen und Anwendungsbeispiele.- 5.1 Simulationen.- 5.2 Anwendungsbeispiele.- 6 Erweiterungsmöglichkeiten des Ansatzes der Vektorautokorrelationen und seine Beziehung zu einigen neueren Ansätzen der Identifikation von ARMA Modellen.- 6.1 Einige Anmerkungen zu grenzstationären Prozesse.- 6.2 Kenngrößen einiger neuerer Verfahren zur Identifikation von ARMA Modellen und ihr Zusammenhang mit den Vektorautokorrelationen.- Zusammenfassung.

Product details

Authors Efstathios Paparoditis
Publisher Physica-Verlag
 
Languages German
Product format Paperback / Softback
Released 01.01.1990
 
EAN 9783790805178
ISBN 978-3-7908-0517-8
No. of pages 171
Weight 320 g
Illustrations X, 171 S.
Series Arbeiten zur angewandten Statistik
Arbeiten zur angewandten Statistik
Subject Social sciences, law, business > Business > Economics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.