Share
Fr. 71.00
Josef Hofer-Alfeis
Nachrichtentechnik - 15: Übungsbeispiele zur Systemtheorie - 41 Aufgaben m. ausführl. komment. Lösungen
German · Paperback / Softback
Shipping usually within 1 to 2 weeks (title will be printed to order)
Description
Kapi tel und Lasungen sind in diesem Buchteil in gleicher Weise durchnummeriert wie im Aufgabentei 1, unterschieden durch ein vorgestelltes L statt A. Hinweise auf das Buch "Methoden der Systemtheorie" von H. Marko, 2. Auflage 1982 (Band 1 dieser Buchreihe), werden mi t "MS S .... " oder MS ( ... Formelnummer ... ) gegeben. Weitere Literaturempfehlungen finden sich z.B. am Ende des obengenannten Buches. Vor jedem Lasungsunterpunkt ist des einfacheren Vberlicks willen stichwortartig die Aufgabenstellung wiederholt. ErUiuterungen, die liber die geforderte Lasung hinausgegen, sind in Klammern dazugesetzt. Erklarungen zu Herlei tungsschri tten sind oft mi t einem Pfeil auf das vorangehende Gleichheitszeichen gegeben. Komplexe GraBen werden nur bei den Fourierkoeffizienten durch Unterstreichen zur Unterscheidung von den gleichnamigen reel len GraBen gekennzeichnet. 55 L 1.1 Periodische Siigezahnfunktion, mit Parameter 7 auf der Zeitachse verschiebbar (1) a) formelmaBige Darstellung mit T=O ue(t) = t rect "(t-T/2)/T) u(t) = ~o (t-kT) rect((t-kT-T/2)/T), k= ... -1,0,1,2, ... oder O~tfT , -t T u (t) e = sonst r ° Uo kT f t f (k+ 1 ) T u(t) -( t-kT), k= .. -1 , ° 1 , ,2, ... = T b) formelmaBige Darstellung mit 1::"::0 Uo u(t) = T (t-7:'-kT) rect ((t-7:-kT-T/2)/T), k= ... -1 ,0, 1 ,2, ...
List of contents
Einführung.- 1. Spektralanalyse bei periodischen Funktionen.- 1.1 Periodische Sägezahnfunktion, mit Parameter ? auf der Zeitachse verschiebbar (1).- 1.2 Dirac-Puls.- 1.3 Periodische Sägezahnfunktion, mit Parameter ? 4 63 auf der Zeitachse verschiebbar (2).- 1.4 Kombinierte Dreiecksschwingung.- 1.5 Periodisches Ausgangssignal einer Phasenanschnittssteuerung.- 1.6 Periodische Rechteckfunktion mit Bandbegrenzung.- 2. Operationen mit dem Dirac-Impuls.- 2.1 Eigenschaften des Dirac-Impulses.- 2.2 Approximationen für den Dirac-Impuls.- 2.3 Faltung mit Dirac-Impuls.- 3. Anwendung der Integraltransformationen.- 3.1 Fourierintegral angewandt auf die rect-Funktion.- 3.2 Fourier- und Laplacetransformation einer halbstationären bzw. anklingenden Sinus-Schwingung.- 3.3 Fourier-, Laplace- und Allgemeine Spektraltransformation.- 3.4 Exponentielle Dämpfung.- 4. Lineare zeitinvariante Systeme mit kausaler Impulsantwort.- 4.1 Ausführliches Beispiel.- 4.2 RC-Hochpaß als Differenzier-Approximation.- 4.3 Aktive RC-Schaltung.- 4.4 Beispiel mit Laplace-Tabelle.- 4.5 Linearität und Zeitinvarianz.- 5. Faltung.- 5.1 Ausführliches Berechnungsbeispiel.- 5.2 System mit näherungsweise differnzierender Wirkung, Autokorrelations- und Autofaltungsfunktion.- 5.3 Bekannte systemtheoretische und mathematische Operationen ausgedrückt durch Faltung.- 5.4 Antwort eines Schmalbandfilters auf einen Rechteckimpuls.- 6. Gesetze der Fourier-Transformation (FT).- 6.1 Vereinfachung von Fourierkorrespondenzen mittels Differentiationssatz.- 6.2 Abgeschrägter Rechteckimpuls.- 6.3 Trapez-Impuls.- 7. Hilbert-Transformation (HT).- 7.1 Hilbert-Transformation im Zeitbereich.- 7.2 Hilbert-Transformation im Frequenzbereich.- 7.3 Realisierbare Minimumphasensysteme (MPS).- 7.4 Hilbert-Transformierte undFourierkorrespondenztafel.- 8. Einschwingvorgänge.- 8.1 Küpfmüller-, Spalt- und Gauß-Tiefpaß.- 8.2 Hochpaß, Bandpaß und Schmalbandnäherung.- 8.3 Gleich- und Wechselsignalsprungantwort eines Tiefpasses.- 8.4 Wechselsignalsprungantwort eines idealen Bandpasses.- 8.5 Gauß-Tief-,-Hoch- und Bandpaß.- 9. Das Abtasttheorem.- 9.1 Abtastung eines schmalbandgefilterten Signals.- 9.2 Abtastsystem.- 9.3 Abtastung im Zeit- und Frequenzbereich.- 10. Zeitdiskrete Signale und Systeme.- 10.1 Echoverzerrung.- 10.2 z-Transformation.- 10.3 Diskretes Entzerrungsfilter.- 10.4 Diskrete FT (DFT).- Einführung.- 1. Spektralanalyse bei periodischen Funktionen.- 1.1 Periodische Sägezahnfunktion, mit Parameter ? auf der Zeitachse verschiebbar (1).- 1.2 Dirac-Puls.- 1.3 Periodische Sägezahnfunktion, mit Parameter ? 4 63 auf der Zeitachse verschiebbar (2).- 1.4 Kombinierte Dreiecksschwingung.- 1.5 Periodisches Ausgangssignal einer Phasenanschnittssteuerung.- 1.6 Periodische Rechteckfunktion mit Bandbegrenzung.- 2. Operationen mit dem Dirac-Impuls.- 2.1 Eigenschaften des Dirac-Impulses.- 2.2 Approximationen für den Dirac-Impuls.- 2.3 Faltung mit Dirac-Impuls.- 3. Anwendung der Integraltransformationen.- 3.1 Fourierintegral angewandt auf die rect-Funktion.- 3.2 Fourier- und Laplacetransformation einer halbstationären bzw. anklingenden Sinus-Schwingung.- 3.3 Fourier-, Laplace- und Allgemeine Spektraltransformation.- 3.4 Exponentielle Dämpfung.- 4. Lineare zeitinvariante Systeme mit kausaler Impulsantwort.- 4.1 Ausführliches Beispiel.- 4.2 RC-Hochpaß als Differenzier-Approximation.- 4.3 Aktive RC-Schaltung.- 4.4 Beispiel mit Laplace-Tabelle.- 4.5 Linearität und Zeitinvarianz.- 5. Faltung.- 5.1 Ausführliches Berechnungsbeispiel.- 5.2 System mit näherungsweise differnzierenderWirkung, Autokorrelations- und Autofaltungsfunktion.- 5.3 Bekannte systemtheoretische und mathematische Operationen ausgedrückt durch Faltung.- 5.4 Antwort eines Schmalbandfilters auf einen Rechteckimpuls.- 6. Gesetze der Fourier-Transformation (FT).- 6.1 Vereinfachung von Fourierkorrespondenzen mittels Differentiationssatz.- 6.2 Abgeschrägter Rechteckimpuls.- 6.3 Trapez-Impuls.- 7. Hilbert-Transformation (HT).- 7.1 Hilbert-Transformation im Zeitbereich.- 7.2 Hilbert-Transformation im Frequenzbereich.- 7.3 Realisierbare Minimumphasensysteme (MPS).- 7.4 Hilbert-Transformierte und Fourierkorrespondenztafel.- 8. Einschwingvorgänge.- 8.1 Küpfmüller-, Spalt- und Gauß-Tiefpaß.- 8.2 Hochpaß, Bandpaß und Schmalbandnäherung.- 8.3 Gleich- und Wechselsignalsprungantwort eines Tiefpasses.- 8.4 Wechselsignalsprungantwort eines idealen Bandpasses.- 8.5 Gauß-Tief-,-Hoch- und Bandpaß.- 9. Das Abtasttheorem.- 9.1 Abtastung eines schmalbandgefilterten Signals.- 9.2 Abtastsystem.- 9.3 Abtastung im Zeit- und Frequenzbereich.- 10. Zeitdiskrete Signale und Systeme.- 10.1 Echoverzerrung.- 10.2 z-Transformation.- 10.3 Diskretes Entzerrungsfilter.- 10.4 Diskrete FT (DFT).
Product details
| Authors | Josef Hofer-Alfeis |
| Publisher | Springer, Berlin |
| Languages | German |
| Product format | Paperback / Softback |
| Released | 01.01.1985 |
| EAN | 9783540150831 |
| ISBN | 978-3-540-15083-1 |
| No. of pages | 212 |
| Weight | 424 g |
| Illustrations | XI, 212 S. |
| Sets |
Nachrichtentechnik Nachrichtentechnik |
| Series |
Nachrichtentechnik |
| Subject |
Natural sciences, medicine, IT, technology
> Technology
> Electronics, electrical engineering, communications engineering
|
Customer reviews
No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.
Write a review
Thumbs up or thumbs down? Write your own review.