Fr. 134.00

Geometric and Analytic Number Theory

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

In the English edition, the chapter on the Geometry of Numbers has been enlarged to include the important findings of H. Lenstraj furthermore, tried and tested examples and exercises have been included. The translator, Prof. Charles Thomas, has solved the difficult problem of the German text into English in an admirable way. He deserves transferring our 'Unreserved praise and special thailks. Finally, we would like to express our gratitude to Springer-Verlag, for their commitment to the publication of this English edition, and for the special care taken in its production. Vienna, March 1991 E. Hlawka J. SchoiBengeier R. Taschner Preface to the German Edition We have set ourselves two aims with the present book on number theory. On the one hand for a reader who has studied elementary number theory, and who has knowledge of analytic geometry, differential and integral calculus, together with the elements of complex variable theory, we wish to introduce basic results from the areas of the geometry of numbers, diophantine ap proximation, prime number theory, and the asymptotic calculation of number theoretic functions. However on the other hand for the student who has al ready studied analytic number theory, we also present results and principles of proof, which until now have barely if at all appeared in text books.

List of contents

1. The Dirichlet Approximation Theorem.- Dirichlet approximation theorem - Elementary number theory - Pell equation - Cantor series - Irrationality of ?(2) and ?(3) - multidimensional diophantine approximation - Siegel's lemma - Exercises on Chapter 1..- 2. The Kronecker Approximation Theorem.- Reduction modulo 1 - Comments on Kronecker's theorem - Linearly independent numbers - Estermann's proof - Uniform Distribution modulo 1 - Weyl's criterion - Fundamental equation of van der Corput - Main theorem of uniform distribution theory - Exercises on Chapter 2..- 3. Geometry of Numbers.- Lattices - Lattice constants - Figure lattices - Fundamental region - Minkowski's lattice point theorem - Minkowski's linear form theorem - Product theorem for homogeneous linear forms - Applications to diophantine approximation - Lagrange's theorem - the lattice?(i) - Sums of two squares - Blichfeldt's theorem - Minkowski's and Hlawka's theorem - Rogers' proof - Exercises on Chapter 3..- 4. Number Theoretic Functions.- Landau symbols - Estimates of number theoretic functions - Abel transformation - Euler's sum formula - Dirichlet divisor problem - Gauss circle problem - Square-free and k-free numbers - Vinogradov's lemma - Formal Dirichlet series - Mangoldt's function - Convergence of Dirichlet series - Convergence abscissa - Analytic continuation of the zeta- function - Landau's theorem - Exercises on Chapter 4..- 5. The Prime Number Theorem.- Elementary estimates - Chebyshev's theorem - Mertens' theorem - Euler's proof of the infinity of prime numbers - Tauberian theorem of Ingham and Newman - Simplified version of the Wiener-Ikehara theorem -Mertens' trick - Prime number theorem - The ?-function for number theory in ?(i) - Hecke's prime number theorem for ?(i) - Exercises on Chapter 5..- 6. Characters of Groups of Residues.- Structure of finite abelian groups - The character group - Dirichlet characters - Dirichlet L-series - Prime number theorem for arithmetic progressions - Gauss sums - Primitive characters - Theorem of Pólya and Vinogradov - Number of power residues - Estimate of the smallest primitive root - Quadratic reciprocity theorem - Quadratic Gauss sums - Sign of a Gauss sum - Exercises on Chapter 6..- 7. The Algorithm of Lenstra, Lenstra and Lovász.- Addenda.- Solutions for the Exercises.- Index of Names.- Index of Terms.

About the author

Univ.-Prof. Dr. Rudolf Taschner, geboren 1953 in Ternitz, studierte an der Universität Wien Mathematik und Physik. 1977 begann er seine Arbeit an der Technischen Universität Wien, an der er nach einem Zwischenaufenthalt in Stanford bis heute als Professor tätig ist. Rudolf Taschner gründete und betreibt zusammen mit seiner Frau und Kollegen der TU Wien "math.space", einen Veranstaltungsort im Wiener MuseumsQuartier, der Mathematik als kulturelle Errungenschaft präsentiert und sowohl in Österreich als auch international größte Anerkennung als höchst innovative Einrichtung gefunden hat. 2004 wurde Rudolf Taschner zum "Wissenschaftler des Jahres" gewählt. Sein Bestseller "Zahl Zeit Zufall. Alles Erfindung" erhielt zahlreiche Auszeichnungen, sein im Herbst 2009 erschienenes Werk "Rechnen mit Gott und der Welt" wurde zum Buchliebling 2010 gewählt. 2011 erhielt er den Preis der Stadt Wien für Volksbildung.

Product details

Authors Edmun Hlawka, Edmund Hlawka, Johanne Schoissengeier, Johannes Schoißengeier, Taschner, Rudolf Taschner
Assisted by Charles Thomas (Translation)
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.1991
 
EAN 9783540520160
ISBN 978-3-540-52016-0
No. of pages 238
Dimensions 169 mm x 14 mm x 245 mm
Weight 424 g
Illustrations X, 238 p.
Series Universitext
Universitext
Subject Natural sciences, medicine, IT, technology > Mathematics > Analysis

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.