Share
Til Arens, Tilo Arens, Rol Busam, Rolf Busam, Frank Hettlich, Frank u a Hettlich
Arbeitsbuch Grundwissen Mathematikstudium - Analysis und Lineare Algebra mit Querverbindungen - Aufgaben, Hinweise, Lösungen und Lösungswege
German · Paperback / Softback
Description
Dieses Arbeitsbuch enthält die Aufgaben, Hinweise, Lösungen und Lösungsweg aller 26 Kapitel des Lehrbuchs Arens et al., Grundwissen Mathematikstudium - Analysis und Lineare Algebra mit Querverbindungen. Die Inhalte des Buchs stehen als pdf-Dateien auch unter www.matheweb.de zur Verfügung. Durch die stufenweise Offenlegung der Lösung ist das Werk bestens geeignet zum Selbststudium, zur Vorlesungsbegleitung und als Prüfungsvorbereitung. Inhaltlich deckt das Buch den Stoff der Analysis und der linearen Algebra aus den ersten beiden Semestern ab. Es wird abgerundet durch die Analysis mehrerer Veränderlicher, Elemente der Funktionalanalysis, Elemente der Zahlentheorie sowie der diskreten Mathematik.
List of contents
Vorwort.- 1 Was ist Mathematik und was tun Mathematiker? - 2 Logik, Mengen, Abbildungen _ die Sprache der Mathematik .- 2.1 Junktoren und Quantoren.- 2.2 Grundbegriffe aus der Mengenlehre.- 2.3 Abbildungen.- 2.4 Relationen.- Zusammenfassung.- Aufgaben.- 3 Algebraische Strukturen _ ein Blick hinter die Rechenregeln .- 3.1 Gruppen.- 3.2 Homomorphismen.- 3.3 Körper.- 3.4 Ringe.- Zusammenfassung.- Aufgaben.- 4 Zahlbereiche _ Basis nicht nur der Analysis .- 4.1 Reelle Zahlen.- 4.2 Körperaxiome für die reellen Zahlen.- 4.3 Anordnungsaxiome für die reellen Zahlen.- 4.4 Ein Vollständigkeitsaxiom für die reellen Zahlen.- 4.5 Natürliche Zahlen und vollständige Induktion.- 4.6 Ganze Zahlen und rationale Zahlen.- 4.7 Komplexe Zahlen: Ihre Arithmetik und Geometrie.- Zusammenfassung.- Aufgaben.- 5 Lineare Gleichungssysteme _ Grundlage der linearen Algebra .- 5.1 Erste Lösungsversuche.- 5.2 Das Lösungsverfahren von Gauß und Jordan.- 5.3 Das Lösungskriterium und die Struktur der Lösung.- Zusammenfassung.- Aufgaben.- 6 Vektorräume _ von Basen und Dimensionen .- 6.1 Der Vektorraumbegriff.- 6.2 Beispiele von Vektorräumen.- 6.3 Untervektorräume.- 6.4 Basis und Dimension.- 6.5 Summe und Durchschnitt von Untervektorräumen.- Zusammenfassung.- Aufgaben.- 7 Analytische Geometrie _ Rechnen statt Zeichnen .- 7.1 Punkte und Vektoren im Anschauungsraum.- 7.2 Das Skalarprodukt im Anschauungsraum.- 7.3 Weitere Produkte von Vektoren im Anschauungsraum.- 7.4 Abstände zwischen Punkten, Geraden und Ebenen.- 7.5 Wechsel zwischen kartesischen Koordinatensystemen.- Zusammenfassung.- Aufgaben.- 8 Folgen _ der Weg ins Unendliche .- 8.1 Der Begriff einer Folge.- 8.2 Konvergenz.- 8.3 Häufungspunkte und Cauchy-Folgen.- Zusammenfassung.- Aufgaben.- 9 Funktionen und Stetigkeit _ _ trifft auf _ .- 9.1 Grundlegendes zu Funktionen.- 9.2 Beschränkte und monotone Funktionen.- 9.3 Grenzwerte für Funktionen und die Stetigkeit.- 9.4 Abgeschlossene, offene, kompakte Mengen.- 9.5 Stetige Funktionen mit kompaktem Definitionsbereich, Zwischenwertsatz.- Zusammenfassung.- Aufgaben.- 10 Reihen _ Summieren bis zum Letzten .- 10.1 Motivation und Definition.- 10.2 Kriterien für Konvergenz.- 10.3 Absolute Konvergenz.- 10.4 Kriterien für absolute Konvergenz.- Zusammenfassung.- Aufgaben.- 11 Potenzreihen _ Alleskönner unter den Funktionen .- 11.1 Definition und Grundlagen.- 11.2 Die Darstellung von Funktionen durch Potenzreihen.- 11.3 Die Exponentialfunktion.- 11.4 Trigonometrische Funktionen.- 11.5 Der Logarithmus.- Zusammenfassung.- Aufgaben.- 12 Lineare Abbildungen und Matrizen _ Brücken zwischen Vektorräumen .- 12.1 Definition und Beispiele.- 12.2 Verknüpfungen von linearen Abbildungen.- 12.3 Kern, Bild und die Dimensionsformel.- 12.4 Darstellungsmatrizen.- 12.5 Das Produkt von Matrizen.- 12.6 Das Invertieren von Matrizen.- 12.7 Elementarmatrizen.- 12.8 Basistransformation.- 12.9 Der Dualraum.- Zusammenfassung.- Aufgaben.- 13 Determinanten _ Kenngrößen von Matrizen .- 13.1 Die Definition der Determinante.- 13.2 Determinanten von Endomorphismen.- 13.3 Berechnung der Determinante.- 13.4 Anwendungen der Determinante.- Zusammenfassung.- Aufgaben.- 14 Normalformen _ Diagonalisieren und Triangulieren .- 14.1 Diagonalisierbarkeit.- 14.2 Eigenwerte und Eigenvektoren.- 14.3 Berechnung der Eigenwerte und Eigenvektoren.- 14.4 Algebraische und geometrische Vielfachheit.- 14.5 Die Exponentialfunktion für Matrizen.- 14.6 Das Triangulieren von Endomorphismen.- 14.7 Die Jordan-Normalform.- 14.8 Die Berechnung einer Jordan-Normalform und Jordan-Basis.- Zusammenfassung.- Aufgaben.- 15 Differenzialrechnung _ die Linearisierung von Funktionen .- 15.1 Die Ableitung.- 15.2 Differenziationsregeln.- 15.3 Der Mittelwertsatz.- 15.4 Verhalten differenzierbarer Funktionen.- 15.5 Taylorreihen.- Zusammenfassung.- Aufgaben.- 16 Integrale _ von lokal zu global .- 16.1 Integration von Treppenfunktionen.- 16.2 Das Lebesgue-Integral.- 16.3 Stammfunktionen.- 16.4 Integrationstechniken.- 16.5 I
About the author
PD Dr. Tilo Arens ist Dozent an der Fakultät für Mathematik der Universität Karlsruhe tätig. Für den Vorlesungszyklus Höhere Mathematik für Studierende des Maschinenbaus und des Chemieingenieurwesens erhielt er 2004 gemeinsam mit anderen Mitgliedern seines Instituts den Landeslehrpreis des Landes Baden-Württemberg.
Dr. Rolf Busam ist wissenschaftlicher Mitarbeiter am Mathematischen Institut der Universität Heidelberg, hält dort seit vielen Jahren die Analysis-Vorlesungen und ist mitverantwortlich für die Lehrerausbildung.
PD Dr. Frank Hettlich ist als Dozenten an der Fakultät für Mathematik der Universität Karlsruhe tätig. Für den Vorlesungszyklus Höhere Mathematik für Studierende des Maschinenbaus und des Chemieingenieurwesens erhielt er 2004 gemeinsam mit anderen Mitgliedern ihres Instituts den Landeslehrpreis des Landes Baden-Württemberg.
Product details
Authors | Til Arens, Tilo Arens, Rol Busam, Rolf Busam, Frank Hettlich, Frank u a Hettlich |
Publisher | Springer Spektrum |
Languages | German |
Product format | Paperback / Softback |
Released | 01.12.2012 |
EAN | 9783827430014 |
ISBN | 978-3-8274-3001-4 |
No. of pages | 243 |
Dimensions | 197 mm x 270 mm x 13 mm |
Weight | 570 g |
Illustrations | 48 SW-Abb., 12 Tabellen |
Subject |
Natural sciences, medicine, IT, technology
> Mathematics
> Basic principles
|
Customer reviews
No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.
Write a review
Thumbs up or thumbs down? Write your own review.