Fr. 70.00

Permutation Complexity in Dynamical Systems - Ordinal Patterns, Permutation Entropy and All That

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

The study of permutation complexity can be envisioned as a new kind of symbolic dynamics whose basic blocks are ordinal patterns, that is, permutations defined by the order relations among points in the orbits of dynamical systems.
Since its inception in 2002 the concept of permutation entropy has sparked a new branch of research in particular regarding the time series analysis of dynamical systems that capitalizes on the order structure of the state space. Indeed, on one hand ordinal patterns and periodic points are closely related, yet ordinal patterns are amenable to numerical methods, while periodicity is not.
Another interesting feature is that since it can be shown that random (unconstrained) dynamics has no forbidden patterns with probability one, their existence can be used as a fingerprint to identify any deterministic origin of orbit generation.
This book is primarily addressed to researchers working in the field of nonlinear dynamics and complex systems, yet will also be suitable for graduate students interested in these subjects. The presentation is a compromise between mathematical rigor and pedagogical approach. Accordingly, some of the more mathematical background needed for more in depth understanding has been shifted into the appendices.

List of contents

What Is This All About?.- First Applications.- Ordinal Patterns.- Ordinal Structure of the Shifts.- Ordinal Structure of the Signed Shifts.- Metric Permutation Entropy.- Topological Permutation Entropy.- Discrete Entropy.- Detection of Determinism.- Space-Time Dynamics.- Conclusion and Outlook.

Summary

The study of permutation complexity can be envisioned as a new kind of symbolic dynamics whose basic blocks are ordinal patterns, that is, permutations defined by the order relations among points in the orbits of dynamical systems.
Since its inception in 2002 the concept of permutation entropy has sparked a new branch of research in particular regarding the time series analysis of dynamical systems that capitalizes on the order structure of the state space. Indeed, on one hand ordinal patterns and periodic points are closely related, yet ordinal patterns are amenable to numerical methods, while periodicity is not.
Another interesting feature is that since it can be shown that random (unconstrained) dynamics has no forbidden patterns with probability one, their existence can be used as a fingerprint to identify any deterministic origin of orbit generation.
This book is primarily addressed to researchers working in the field of nonlinear dynamics and complex systems, yet will also be suitable for graduate students interested in these subjects. The presentation is a compromise between mathematical rigor and pedagogical approach. Accordingly, some of the more mathematical background needed for more in depth understanding has been shifted into the appendices.

Additional text

From the reviews:
“This book describes a study of permutation complexity … . The book is aimed primarily at researchers in nonlinear dynamics and complex systems, but it is also accessible to graduate students.” (William J. Satzer jun, Zentralblatt MATH, Vol. 1197, 2010)

Report

From the reviews:
"This book describes a study of permutation complexity ... . The book is aimed primarily at researchers in nonlinear dynamics and complex systems, but it is also accessible to graduate students." (William J. Satzer jun, Zentralblatt MATH, Vol. 1197, 2010)

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.