Fr. 69.00

Tetramer Stability and Functional Regulation of Tumor Suppressor Protein p53

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

This thesis presents the first report of the comprehensive and quantitative analysis of the effects of tumor-derived mutations on the tetrameric structure of tumor suppressor protein p53, which plays a central role in maintaining genomic integrity. Inactivation of p53 via mutation of its gene is a key step in tumorigenesis. Biophysical analyses revealed that the stability of the mutant peptides varied widely. Formation of a tetrameric structure is to be critical for protein-protein interactions, DNA binding, and the post-translational modification of p53. A small destabilization of the tetrameric structure therefore could result in dysfunction of tumor suppressor activity. This work suggests that the threshold for loss of tumor suppressor activity, in terms of the disruption of p53's tetrameric structure, could be extremely low. Furthermore, functional control of p53 via tetramer formation was demonstrated, based on the structure-function analysis of mutant p53. The results disclosed that relatively small changes in tetramer formation, induced by the stabilization or inhibition of homo-tetramerization, could control p53 function.

List of contents

Quantitative analysis for p53 tetramerization domain mutants reveals a low threshold for tumor suppressor inactivation.- Stabilization of mutant tetrameric structures by calixarene derivatives.- Inhibition of the transcriptional activity of p53 through hetero-oligomerization.

About the author










Dr. Rui Kamada
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University

Summary

This thesis presents the first report of the comprehensive and quantitative analysis of the effects of tumor-derived mutations on the tetrameric structure of tumor suppressor protein p53, which plays a central role in maintaining genomic integrity. Inactivation of p53 via mutation of its gene is a key step in tumorigenesis. Biophysical analyses revealed that the stability of the mutant peptides varied widely. Formation of a tetrameric structure is to be critical for protein–protein interactions, DNA binding, and the post-translational modification of p53. A small destabilization of the tetrameric structure therefore could result in dysfunction of tumor suppressor activity. This work suggests that the threshold for loss of tumor suppressor activity, in terms of the disruption of p53’s tetrameric structure, could be extremely low. Furthermore, functional control of p53 via tetramer formation was demonstrated, based on the structure–function analysis of mutant p53. The results disclosed that relatively small changes in tetramer formation, induced by the stabilization or inhibition of homo-tetramerization, could control p53 function.

Product details

Authors Rui Kamada
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 07.03.2012
 
EAN 9784431541349
ISBN 978-4-431-54134-9
No. of pages 74
Dimensions 166 mm x 235 mm x 9 mm
Weight 250 g
Illustrations XIV, 74 p.
Series Springer Theses
Springer Theses
Subject Natural sciences, medicine, IT, technology > Chemistry > Organic chemistry

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.