Fr. 65.00

Analysis - Eine anwendungsbezogene Einführung

German · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Der Studierende des Faches Mathematik steht häufig vor dem Problem: Wozu sind die mathematischen Begriffe, Sätze und Denkweisen gut, die in großer Vielzahl auf ihn ein stürmen? Wozu werden die Ergebnisse gebraucht, flir welche weiteren überlegungen sind sie wiederum Grundlage und Ausgangspunkt? Die vorliegende Einführung in die Analysis hat zum Ziel, dem Leser bei diesen Frage stellungen zu helfen, ihm Beweggründe flir die wichtigsten Grundbegriffe, Ansätze und Ziele der Differential- und Integralrechnung zu vermitteln. Als Schlüsselproblem erweist sich dabei die Frage nach den Lösungen von Gleichungen und Gleichungssystemen. Hiervon ausgehend werden Abbildungsbegriff, Konvergenzbe griff (Iteration), Stetigkeit (Lösungsexistenz ), Differenzierbarkeit (Newton-Verfahren) und vieles mehr erschlossen. Andere Inhalte wurzeln auf natürliche Weise in geometri schen Fragestellungen, wie die Integralrechnung (Flächeninhaltsberechnung) und die trigonometrischen Funktionen (Entfernungsbestimmung). Der Leser erhält damit eine Richtschnur in die Hand, mit der sich die Differential- und Integralrechnung überschau bar gliedert. Bei der Stoffauswahl wurden Inhalte bevorzugt, die einerseits breiten Anwendungsbezug haben, andererseits vorbereitend zu Begriffsbildungen der höheren Analysis hinführen, insbesondere zur Funktionalanalysis, wie z. B. der Banachsche Fixpunktsatz, der Bor suksche Antipodensatz, der Brouwersche Fixpunktsatz, das Newton-Verfahren für mehrere Veränderliche und anderes mehr. Die numerischen Verfahren, die in diesem Buch behandelt werden, lassen sich bequem auf Kleinrechnern durchführen, wie sie heute in der Schule vielfach verwendet werden. Schließlich sei erwähnt, daß bei der Einführung der Konvergenz wie auch der Stetigkeit einneuer Weg beschritten wird.

List of contents

1 Gleichungssysteme - Abbildungen.- 2 Kontraktive Abbildungen - Konvergenz.- 3 Lösungsexistenz - Stetigkeit.- 4 Linearisierung von Funktionen - Differentialrechnung einer reellen Veränderlichen.- 5 Flächen- und Rauminhalte - Integralrechnung.- 6 Behandlung von Gleichungssystemen - Differentialrechnung mehrerer reeller Veränderlicher.- Anhang: Reelle Zahlen.- A1 Das Axiomensystem der reellen Zahlen.- A2 Abgeleitete Regeln.- A3 Natürliche Zahlen.- A4 Ganze, rationale und irrationale Zahlen.- A5 Archimedische Eigenschaft und Intervallschachtelungsprinzip.- A6 Dezimalzahlen.- A7 n-te Wurzel aus a.- Literatur.- Symbole.

About the author

Professor Dr. Friedrich Wille, Universität Kassel.

Product details

Authors Friedrich Wille
Publisher Vieweg+Teubner
 
Languages German
Product format Paperback / Softback
Released 01.01.1976
 
EAN 9783519027539
ISBN 978-3-519-02753-9
No. of pages 336
Weight 382 g
Illustrations 336 S. 6 Abb.
Series Mathematik für das Lehramt an Gymnasien
Mathematik für das Lehramt an Gymnasien
Subject Natural sciences, medicine, IT, technology > Mathematics > Analysis

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.