Fr. 135.00

Emerging Paradigms in Machine Learning

English · Hardback

Shipping usually within 6 to 7 weeks

Description

Read more

This book presents fundamental topics and algorithms that form the core of machine learning (ML) research, as well as emerging paradigms in intelligent system design. The multidisciplinary nature of machine learning makes it a very fascinating and popular area for research. The book is aiming at students, practitioners and researchers and captures the diversity and richness of the field of machine learning and intelligent systems. Several chapters are devoted to computational learning models such as granular computing, rough sets and fuzzy sets An account of applications of well-known learning methods in biometrics, computational stylistics, multi-agent systems, spam classification including an extremely well-written survey on Bayesian networks shed light on the strengths and weaknesses of the methods. Practical studies yielding insight into challenging problems such as learning from incomplete and imbalanced data, pattern recognition of stochastic episodic events and on-line mining of non-stationary data streams are a key part of this book.

List of contents

From the content: Emerging Paradigms in Machine Learning: An Introduction.- Extensions of Dynamic Programming as a New Tool for Decision Tree Optimization.- Optimised information abstraction in granular Min/Max clustering.- Mining Incomplete Data-A Rough Set Approach.- Roles Played by Bayesian Networks in Machine Learning: An Empirical Investigation.

Summary

This  book presents fundamental topics and algorithms that form the core of machine learning (ML) research, as well as emerging paradigms in intelligent system design. The  multidisciplinary nature of machine learning makes it a very fascinating and popular area for research.  The book is aiming at students, practitioners and researchers and captures the diversity and richness of the field of machine learning and intelligent systems.  Several chapters are devoted to computational learning models such as granular computing, rough sets and fuzzy sets An account of applications of well-known learning methods in biometrics, computational stylistics, multi-agent systems, spam classification including an extremely well-written survey on Bayesian networks shed light on the strengths and weaknesses of the methods. Practical studies yielding insight into challenging problems such as learning from incomplete and imbalanced data, pattern recognition of stochastic episodic events and on-line mining of non-stationary data streams are a key part of this book.   

Product details

Assisted by Lakhm C Jain (Editor), Lakhmi C Jain (Editor), Robert J. Howlett (Editor), Robert J Howlett (Editor), Lakhmi C Jain (Editor), Sheela Ramanna (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 01.09.2012
 
EAN 9783642286988
ISBN 978-3-642-28698-8
No. of pages 498
Weight 904 g
Illustrations XXII, 498 p.
Series Smart Innovation, Systems and Technologies
Smart Innovation, Systems and Technologies
Subjects Natural sciences, medicine, IT, technology > Technology > General, dictionaries

B, Artificial Intelligence, engineering, Smart Systems, Computational Intelligence

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.