Fr. 134.00

First Principles Modelling of Shape Memory Alloys - Molecular Dynamics Simulations

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

Materials sciences relate the macroscopic properties of materials to their microscopic structure and postulate the need for holistic multiscale research. The investigation of shape memory alloys is a prime example in this regard. This particular class of materials exhibits strong coupling of temperature, strain and stress, determined by solid state phase transformations of their metallic lattices.
The present book presents a collection of simulation studies of this behaviour. Employing conceptually simple but comprehensive models, the fundamental material properties of shape memory alloys are qualitatively explained from first principles. Using contemporary methods of molecular dynamics simulation experiments, it is shown how microscale dynamics may produce characteristic macroscopic material properties.
The work is rooted in the materials sciences of shape memory alloys and covers thermodynamical, micro-mechanical and crystallographical aspects. It addresses scientists in these research fields and their students.

List of contents

Preparations.- Method.- Two 3D Examples.- 2D Lennard-Jones Crystals.- Résumée.

Summary

Materials sciences relate the macroscopic properties of materials to their microscopic structure and postulate the need for holistic multiscale research. The investigation of shape memory alloys is a prime example in this regard. This particular class of materials exhibits strong coupling of temperature, strain and stress, determined by solid state phase transformations of their metallic lattices.
The present book presents a collection of simulation studies of this behaviour. Employing conceptually simple but comprehensive models, the fundamental material properties of shape memory alloys are qualitatively explained from first principles. Using contemporary methods of molecular dynamics simulation experiments, it is shown how microscale dynamics may produce characteristic macroscopic material properties.
The work is rooted in the materials sciences of shape memory alloys and  covers  thermodynamical, micro-mechanical  and crystallographical aspects. It addresses scientists in these research fields and their students.

Product details

Authors Oliver Kastner
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 08.02.2012
 
EAN 9783642286186
ISBN 978-3-642-28618-6
No. of pages 176
Weight 403 g
Illustrations XVI, 176 p.
Series Springer Series in Materials Science
Springer Series in Materials Science
Subject Natural sciences, medicine, IT, technology > Physics, astronomy > Electricity, magnetism, optics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.