Sold out

The Foundations of Topological Graph Theory

English · Hardback

Description

Read more

This is not a traditional work on topological graph theory. No current graph or voltage graph adorns its pages. Its readers will not compute the genus (orientable or non-orientable) of a single non-planar graph. Their muscles will not flex under the strain of lifting walks from base graphs to derived graphs. What is it, then? It is an attempt to place topological graph theory on a purely combinatorial yet rigorous footing. The vehicle chosen for this purpose is the con cept of a 3-graph, which is a combinatorial generalisation of an imbedding. These properly edge-coloured cubic graphs are used to classify surfaces, to generalise the Jordan curve theorem, and to prove Mac Lane's characterisation of planar graphs. Thus they playa central role in this book, but it is not being suggested that they are necessarily the most effective tool in areas of topological graph theory not dealt with in this volume. Fruitful though 3-graphs have been for our investigations, other jewels must be examined with a different lens. The sole requirement for understanding the logical development in this book is some elementary knowledge of vector spaces over the field Z2 of residue classes modulo 2. Groups are occasionally mentioned, but no expertise in group theory is required. The treatment will be appreciated best, however, by readers acquainted with topology. A modicum of topology is required in order to comprehend much of the motivation we supply for some of the concepts introduced.

List of contents

1 Introduction.- 1.1 Sets.- 1.2 Graphs.- 1.3 Subgraphs.- 1.4 Cocyeles.- 1.5 Forests, trees, circuits, and paths.- 1.6 Some elementary results.- 1.7 Theorems about trees.- 1.8 Spanning trees.- 1.9 Eulerian graphs.- 1.10 Bipartite graphs.- 1.11 Contractions.- 1.12 Menger's theorem and n-connected graphs.- 1.13 2-connected graphs.- 1.14 Blocks.- 1.15 The cycle and cocycle spaces of a graph.- 1.16 Double covers.- 2 Maps.- 2.1 Permutations.- 2.2 Maps.- 2.3 Imbeddings of maps.- 2.4 3-graphs.- 2.5 From maps to gems and back again.- 2.6 Premaps.- 3 Classification of Surfaces.- 3.1 Dipoles.- 3.2 Reduced and unitary 3-graphs.- 3.3 Canonical gems.- 3.4 Planar graphs.- 4 Consistent and Coherent Orientations.- 4.1 Orientations.- 4.2 Pairwise coherently orientable nets.- 4.3 Families of circuits.- 4.4 Rings.- 5 Non-separating Curves in Surfaces.- 5.1 The main results and their topological implications.- 5.2 Permutation pairs.- 5.3 A condition for a b-cycle to separate.- 5.4 Fundamental sets of semicycles.- 6 Mac Lane's Theorem for 3-Graphs.- 6.1 Congruence.- 6.2 Semicycle covers.- 6.3 Boundary covers.- 6.4 Partial congruence.- 6.5 Mac Lane's theorem.- 6.6 Whitney's characterisation.- 7 Kuratowski's Theorem.- 7.1 Corollaries of Mac Lane's theorem.- 7.2 Kuratowski's theorem.- 7.3 Wagner's theorem.- 8 Duality.- 8.1 Duals.- 8.2 Constructing orthogonal graphs.- 8.3 Duality for planar graphs.- 8.4 The zigzag space.- 8.5 The principal edge tripartition for planar graphs.- 8.6 Walks.- 8.7 Principal cycles and principal cocycles.- 8.8 Diagonals.- 8.9 Every planar graph has a diagonal.- 8.10 No non-planar graph has a diagonal.- 9 Rings of Bonds.- 9.1 Chordal graphs.- 9.2 Rings of bonds.- 10 Bridges.- 10.1 Residues and bridges.- 10.2 Tutte's characterisation.- List of Symbols.

Product details

Authors C. P. Bonnington, C.P. (University of Auckland Bonnington, C.H.C. (Massey University Little, Charles H. Little, Charles H. C. Little
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 01.01.1995
 
EAN 9780387945576
ISBN 978-0-387-94557-6
No. of pages 178
Weight 442 g
Illustrations w. 69 figs.
Subject Natural sciences, medicine, IT, technology > Mathematics > Probability theory, stochastic theory, mathematical statistics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.