Fr. 168.00

The gm/ID Methodology, a sizing tool for low-voltage analog CMOS Circuits - The semi-empirical and compact model approaches

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

In "The gm/ID Methodology, a Sizing Tool for Low-Voltage Analog CMOS Circuits", we compare the semi-empirical to the compact model approach. Small numbers of parameters make the compact model attractive for the model paves the way towards analytic expressions unaffordable otherwise. The E.K.V model is a good candidate, but when it comes to short channel devices, compact models are either inaccurate or loose straightforwardness. Because sizing requires basically a reliable large signal representation of MOS transistors, we investigate the potential of the E.K.V model when its parameters are supposed to be bias dependent. The model-driven and semi-empirical methods are compared considering the Intrinsic Gain Stage and a few more complex circuits. A series of MATLAB files found on extras-springer.com  allow redoing the tests.

List of contents

Preface. Notations. Chapter 1. Sizing the Intrinsic Gain Stage. Chapter 2. The Charge Sheet Model revisited. Chapter 3. Graphical interpretation of the Charge Sheet Model. Chapter 4. Compact modeling. Chapter 5. The real transistor. Chapter 6. The real Intrinsic Gain Stage. Chapter 7. The common gate configuration. Chapter 8. Sizing the Miller Op. Amp. Annex 1. How to utilize the C.D. ROM data. Annex 2. The MATLAB toolbox. Annex 3. Temperature and Mismatch, from C.S.M. to E.K.V. Annex 4. E.K.V. intrinsic capacitance models. Bibliography. Index.

About the author

Dr. Paul Jespers is Professor Emeritus at UCL, Louvain-la-Neuf, Belgium, and has been visiting professor at Stanford ('67-'69) and UC Berkeley ('90-'91).
He has co-authored several books, and in 2001 published "Integrated Digital-to-Analog and Analog-to-Digital Converters" which was published by Wiley (ISBN 0-19-856446-5)

Summary

In "The gm/ID Methodology, a Sizing Tool for Low-Voltage Analog CMOS Circuits", we compare the semi-empirical to the compact model approach. Small numbers of parameters make the compact model attractive for the model paves the way towards analytic expressions unaffordable otherwise. The E.K.V model is a good candidate, but when it comes to short channel devices, compact models are either inaccurate or loose straightforwardness. Because sizing requires basically a reliable large signal representation of MOS transistors, we investigate the potential of the E.K.V model when its parameters are supposed to be bias dependent. The model-driven and semi-empirical methods are compared considering the Intrinsic Gain Stage and a few more complex circuits. A series of MATLAB files found on extras-springer.com  allow redoing the tests.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.