Read more
No detailed description available for "Number Theory".
List of contents
The average behaviour of the number of solutions of a Diophantine equation and an averaging technique, S.D. Adhikari; Pisot numbers and greedy algorithm, S. Akiyama; upper bounds for the resultant and Diophantine applications, F. Amoroso; logarithmic forms and the abc-conjecture, a. Baker; local-global principles and linear algebraic groups, E. Bayer-Fluckiger; Diophantine approximation and quadratic fields, J. Beck; on a problem of P. Turan concerning irreducible polynomials, A. Berczes et al; on products of the terms of linear recurrences, B. Brindza et al; on the Kronecker-Gyory specialization, B. Brindza, A. Pinter; the Euclidean algorithm in cubic number fields, S. Cavallar; a problem of Diophantus and Dickson's conjecture, A. Dujella; transcendence of Jacobi's theta series and related results, D. Duverney et al; some of my new and almost new problems and results in combinatorial number theory, P. Erdos; lower bounds for resultants II, J.H. Evertse; distribution of binomial coefficients modulo p., Z.M. Franco; the distribution of the zeros of the Riemann zeta function and Baker's theorems, A. Fujii; computing power integral bases in algebraic number fields, I. Gaal; recent bounds for the solutions of decomposable form equations, K. Gyory; on a generalization of the Maillet determinant, S. Kanemitsu, T. Kuzumaki; an approximation problem concerning linear recurrences, P. Kiss; new methods in algebraic independence, M. Laurent; on the arithmetic of simplest sextic fields and related Thue equations, G. Lettl et al; algebraic constructions of lattices; isodual lattices, J. Martinet; real roots of Fibonacci-like polynomials, F. Matyas; on some modular identities, G. Melfi; complete resolution of some families of Diophantine equations, M. Mignotte; experiments on a problem of D. Shanks concerning quadratic fields, T. Nakahara; squares in binary recurrence sequences, K. Nakamula, A. Petho; algebraic curves over finite fields with many rational points, H. Niederreiter, C. Xing; Klein polyhedra for complete decomposable forms, V.I. Parusnikov; arithmetical progression formed by Lucas pseudoprimes, A. Rotkiewicz; reducibility of polynomials over Kroneckerian fields, A. Schinzel; a note on certain exponential Diophantine equations, N. Terai; the fundamental lemma of Kubilius and the model of Kubilius in number fields, J.M. Thuswaldner; Diophantine properties of digital expansions - R. Tijdenan - exponential Diophantine equations 1986-1996, R.F. Tichy; basic algorithms for elliptic curves, H.G. Zimmer. (Part contents).
About the author
Dr. Attial Pethö ist Dozent für Mathematik an der Kossuth Lajos Universität in Debrecen, Ungarn.