Fr. 116.00

Levy Processes, Integral Equations, Statistical Physics: Connections and Interactions

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

In a number of famous works, M. Kac showed that various methods of probability theory can be fruitfully applied to important problems of analysis. The interconnection between probability and analysis also plays a central role in the present book. However, our approach is mainly based on the application of analysis methods (the method of operator identities, integral equations theory, dual systems, integrable equations) to probability theory (Levy processes, M. Kac's problems, the principle of imperceptibility of the boundary, signal theory). The essential part of the book is dedicated to problems of statistical physics (classical and quantum cases). We consider the corresponding statistical problems (Gibbs-type formulas, non-extensive statistical mechanics, Boltzmann equation) from the game point of view (the game between energy and entropy). One chapter is dedicated to the construction of special examples instead of existence theorems (D. Larson's theorem, Ringrose's hypothesis, the Kadison-Singer and Gohberg-Krein questions). We also investigate the Bezoutiant operator. In this context, we do not make the assumption that the Bezoutiant operator is normally solvable, allowing us to investigate the special classes of the entire functions.

List of contents

Introduction.- 1 Levy processes.- 2 The principle of imperceptibility of the boundary.- 3 Approximation of positive functions.- 4 Optimal prediction and matched filtering.- 5 Effective construction of a class of non-factorable operators.- 6 Comparison of thermodynamic characteristics.- 7 Dual canonical systems and dual matrix string equations.- 8 Integrable operators and Canonical Differential Systems.- 9 The game between energy and entropy.- 10 Inhomogeneous Boltzmann equations.- 11 Operator Bezoutiant and concrete examples.- Comments.- Bibliography.- Glossary.- Index.

Summary

In a number of famous works, M. Kac showed that various methods of probability theory can be fruitfully applied to important problems of analysis. The interconnection between probability and analysis also plays a central role in the present book. However, our approach is mainly based on the application of analysis methods (the method of operator identities, integral equations theory, dual systems, integrable equations) to probability theory (Levy processes, M. Kac's problems, the principle of imperceptibility of the boundary, signal theory). The essential part of the book is dedicated to problems of statistical physics (classical and quantum cases). We consider the corresponding statistical problems (Gibbs-type formulas, non-extensive statistical mechanics, Boltzmann equation) from the game point of view (the game between energy and entropy). One chapter is dedicated to the construction of special examples instead of existence theorems (D. Larson's theorem, Ringrose's hypothesis, the Kadison-Singer and Gohberg-Krein questions). We also investigate the Bezoutiant operator. In this context, we do not make the assumption that the Bezoutiant operator is normally solvable, allowing us to investigate the special classes of the entire functions.

Product details

Authors Lev A Sakhnovich, Lev A. Sakhnovich
Publisher Springer, Basel
 
Languages English
Product format Hardback
Released 01.08.2012
 
EAN 9783034803557
ISBN 978-3-0-3480355-7
No. of pages 246
Dimensions 168 mm x 19 mm x 243 mm
Weight 528 g
Illustrations X, 246 p.
Series Operator Theory: Advances and Applications
Operator Theory: Advances and Applications
Subject Natural sciences, medicine, IT, technology > Mathematics > Analysis

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.