Fr. 206.00

Implantable Neural Prostheses 2 - Techniques and Engineering Approaches

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Signi?cant progress has been made in the development of neural prostheses for restoration of human functions and improvement of the quality of life. Biomedical engineers and neuroscientists around the world are working to improve the design and performance of existing devices and to develop novel devices for arti?cial vision, arti?cial limbs, and brain-machine interfaces. This book, Implantable Neural Prostheses 2: Techniques and Engineering Approaches, is part two of a two-volume sequence that describes state-of-the-art advances in techniques associated with implantable neural prosthetic devices. The techniques covered include biocompatibility and biostability, hermetic packaging, electrochemical techniques for neural stimulation applications, novel electrode materials and testing, thin-?lm ?exible microelectrode arrays, in situ char- terization of microelectrode arrays, chip-size thin-?lm device encapsulation, microchip-embedded capacitors and microelectronics for recording, stimulation, and wireless telemetry. The design process in the development of medical devices is also discussed. Advances in biomedical engineering, microfabrication technology, and neu- science have led to improved medical-device designs and novel functions. However, many challenges remain. This book focuses on the engineering approaches, R&D advances, and technical challenges of medical implants from an engineering p- spective. We are grateful to leading researchers from academic institutes, national laboratories, as well as design engineers and professionals from the medical device industry who have contributed to the book. Part one of this series covers designs of implantable neural prosthetic devices and their clinical applications.

List of contents

Technology advances and challenges in hermetic packaging for implantable medical devices (G Jiang ).- The Biocompatibility and Biostability of New Cardiovascular Materials and Devices (Ken Stokes, Medtronic ).- The Electrochemistry of Charge Injection at the Electrode / Electrolyte Interface (Daniel R. Merrill).- Electrochemical Testing and Modeling Methods for implantable medical devices (Andy Hung).- Thin-film microelectrode arrays for biomedical applications (Karen C. Cheung ).- Conducting polymers in neural stimulation applications (David D. Zhou, X. Tracy Cui, Amy Hines and Robert J. Greenberg).- Thin-film coating for implantable medical implants (Orlando Auciello).- Physical Analysis of the Spatial Distribution of Pulsed Electric Potentials above Retinal Prosthesis Arrays (Eli Greenbaum et al).- Platform of ASIC chip design for implantable devices (Wentai Liu).- The Design Process in the development of medical devices (Mike Colvin).- Rechargeable batteries for medical implants (Hisashi Tsukamoto).

Summary

Signi?cant progress has been made in the development of neural prostheses for restoration of human functions and improvement of the quality of life. Biomedical engineers and neuroscientists around the world are working to improve the design and performance of existing devices and to develop novel devices for arti?cial vision, arti?cial limbs, and brain-machine interfaces. This book, Implantable Neural Prostheses 2: Techniques and Engineering Approaches, is part two of a two-volume sequence that describes state-of-the-art advances in techniques associated with implantable neural prosthetic devices. The techniques covered include biocompatibility and biostability, hermetic packaging, electrochemical techniques for neural stimulation applications, novel electrode materials and testing, thin-?lm ?exible microelectrode arrays, in situ char- terization of microelectrode arrays, chip-size thin-?lm device encapsulation, microchip-embedded capacitors and microelectronics for recording, stimulation, and wireless telemetry. The design process in the development of medical devices is also discussed. Advances in biomedical engineering, microfabrication technology, and neu- science have led to improved medical-device designs and novel functions. However, many challenges remain. This book focuses on the engineering approaches, R&D advances, and technical challenges of medical implants from an engineering p- spective. We are grateful to leading researchers from academic institutes, national laboratories, as well as design engineers and professionals from the medical device industry who have contributed to the book. Part one of this series covers designs of implantable neural prosthetic devices and their clinical applications.

Additional text

From the book reviews:
“It is my pleasure to highly recommend this book for a comprehensive discussion of cortical, optic nerve, lateral geniculate, and retinal prostheses as it relates to vision and hearing. … I recommend this book highly for engineers, students, fellows and investigators at advanced levels.” (Joseph J. Grenier, Amazon.com, December, 2014)

Report

From the book reviews:
"It is my pleasure to highly recommend this book for a comprehensive discussion of cortical, optic nerve, lateral geniculate, and retinal prostheses as it relates to vision and hearing. ... I recommend this book highly for engineers, students, fellows and investigators at advanced levels." (Joseph J. Grenier, Amazon.com, December, 2014)

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.