Fr. 179.00

Visualization, Explanation and Reasoning Styles in Mathematics

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

In the 20th century philosophy of mathematics has to a great extent been dominated by views developed during the so-called foundational crisis in the beginning of that century. These views have primarily focused on questions pertaining to the logical structure of mathematics and questions regarding the justi?cation and consistency of mathematics. Paradigmatic in this - spect is Hilbert's program which inherits from Frege and Russell the project to formalize all areas of ordinary mathematics and then adds the requi- ment of a proof, by epistemically privileged means (?nitistic reasoning), of the consistency of such formalized theories. While interest in modi?ed v- sions of the original foundational programs is still thriving, in the second part of the twentieth century several philosophers and historians of mat- matics have questioned whether such foundational programs could exhaust the realm of important philosophical problems to be raised about the nature of mathematics. Some have done so in open confrontation (and hostility) to the logically based analysis of mathematics which characterized the cl- sical foundational programs, while others (and many of the contributors to this book belong to this tradition) have only called for an extension of the range of questions and problems that should be raised in connection with an understanding of mathematics. The focus has turned thus to a consideration of what mathematicians are actually doing when they produce mathematics. Questions concerning concept-formation, understanding, heuristics, changes instyle of reasoning, the role of analogies and diagrams etc.

List of contents

Mathematical Reasoning and Visualization.- Visualization in Logic and Mathematics.- From Symmetry Perception to Basic Geometry.- Naturalism, Pictures, and Platonic Intuitions.- Mathematical Activity.- Mathematical Explanation and Proof Styles.- Tertium Non Datur: On Reasoning Styles in Early Mathematics.- The Interplay Between Proof and Algorithm in 3rd Century China: The Operation as Prescription of Computation and the Operation as Argumento.- Proof Style and Understanding in Mathematics I: Visualization, Unification and Axiom Choice.- The Varieties of Mathematical Explanation.- The Aesthetics of Mathematics: A Study.

Summary

In the 20th century philosophy of mathematics has to a great extent been dominated by views developed during the so-called foundational crisis in the beginning of that century. These views have primarily focused on questions pertaining to the logical structure of mathematics and questions regarding the justi?cation and consistency of mathematics. Paradigmatic in this - spect is Hilbert’s program which inherits from Frege and Russell the project to formalize all areas of ordinary mathematics and then adds the requi- ment of a proof, by epistemically privileged means (?nitistic reasoning), of the consistency of such formalized theories. While interest in modi?ed v- sions of the original foundational programs is still thriving, in the second part of the twentieth century several philosophers and historians of mat- matics have questioned whether such foundational programs could exhaust the realm of important philosophical problems to be raised about the nature of mathematics. Some have done so in open confrontation (and hostility) to the logically based analysis of mathematics which characterized the cl- sical foundational programs, while others (and many of the contributors to this book belong to this tradition) have only called for an extension of the range of questions and problems that should be raised in connection with an understanding of mathematics. The focus has turned thus to a consideration of what mathematicians are actually doing when they produce mathematics. Questions concerning concept-formation, understanding, heuristics, changes instyle of reasoning, the role of analogies and diagrams etc.

Additional text

From the reviews:

"As its title suggests, the book deals with themes that are of great interest to mathematics educators. … this book is a collection of excellent papers by distinguished authors. It also shows a high standard of book production, in its layout, paper quality, draftsmanship and binding. … this book deserves the attention of all those with an interest in mathematics education." (G. Hanna, Educational Studies in Mathematics, Vol. 64, 2007)

"This fascinating collection of essays is a must-have for those who are interested in the history and philosophy of mathematics … . this is a book that libraries will want to have, particularly if they strive to have good collections on the history and philosophy of mathematics." (Fernando Q. Gouvêa, MathDL, August, 2005)

Report

From the reviews:

"As its title suggests, the book deals with themes that are of great interest to mathematics educators. ... this book is a collection of excellent papers by distinguished authors. It also shows a high standard of book production, in its layout, paper quality, draftsmanship and binding. ... this book deserves the attention of all those with an interest in mathematics education." (G. Hanna, Educational Studies in Mathematics, Vol. 64, 2007)
"This fascinating collection of essays is a must-have for those who are interested in the history and philosophy of mathematics ... . this is a book that libraries will want to have, particularly if they strive to have good collections on the history and philosophy of mathematics." (Fernando Q. Gouvêa, MathDL, August, 2005)

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.