Fr. 69.00

Induced Pluripotent Stem Cells in Brain Diseases - Understanding the Methods, Epigenetic Basis, and Applications for Regenerative Medicine

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Brain diseases can have a large impact on patients and society, and treatment is often not available. A new approach in which somatic cells are reprogrammed into induced pluripotent cells (iPS cells) is a significant breakthrough for regenerative medicine. This promises patient-specific tissue for replacement therapies, as well as disease-specific cells for developmental modeling and drug treatment screening. However, this method faces issues of low reprogramming efficiency, and poorly defined criteria for determining the conversion of one cell type to another. Cells contain epigenetic "memories" of what they were that can affect reprogramming. This book discusses the various methods to reprogram cells, the control and determination of cell identity, the epigenetic models that have emerged and the application of iPS cell therapy for brain diseases, in particular Parkinson's disease and Vanishing White Matter (VWM).

List of contents

I. Introduction.- II. Cell Reprogramming: A New Era in Regenerative Medicine.- a. Stem Cells.- b. Reprogramming Methods.- c. Measuring Pluripotency, Efficiency, and Identity.- d. Induced Pluripotent Stem Cells versus Embryonic Stem Cells.- III. Understanding Epigenetic Memory is the Key to Successful Reprogramming.- a. Pre-fertilization to Embryo.- b. Epigenetic Control in De-, Re-, and Trans-differentiation.- IV. Prospects for Cell Replacement Therapies for Brain Diseases.- a. Parkinson's Disease.- b. Childhood Brain White Matter Disorders.- V. Conclusions.- VI. Acknowledgement.- VII. References.

About the author

Dr. Vivi M. Heine is an assistant professor in the Department of Pediatrics of the VU University Medical Center in Amsterdam, Netherlands. Dr. Heine earned her doctoral degree in Neurobiology from the University of Amsterdam, Netherlands. She then received post-doctoral training at the Dana Farber Cancer Institute, Harvard University, Boston and at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California at San Francisco. She obtained a tenure track position in 2010.

Summary

Brain diseases can have a large impact on patients and society, and treatment is often not available. A new approach in which somatic cells are reprogrammed into induced pluripotent cells (iPS cells) is a significant breakthrough for regenerative medicine. This promises patient-specific tissue for replacement therapies, as well as disease-specific cells for developmental modeling and drug treatment screening. However, this method faces issues of low reprogramming efficiency, and poorly defined criteria for determining the conversion of one cell type to another. Cells contain epigenetic “memories” of what they were that can affect reprogramming. This book discusses the various methods to reprogram cells, the control and determination of cell identity, the epigenetic models that have emerged and the application of iPS cell therapy for brain diseases, in particular Parkinson’s disease and Vanishing White Matter (VWM).​

Product details

Authors Stephani Dooves, Stephanie Dooves, Vivi Heine, Vivi M Heine, Vivi M. Heine, Dwayne Holmes, Dwayne et Holmes, Judith Wagner
Publisher Springer Netherlands
 
Languages English
Product format Paperback / Softback
Released 01.11.2012
 
EAN 9789400728158
ISBN 978-94-0-072815-8
No. of pages 59
Weight 134 g
Illustrations XV, 59 p. 7 illus., 6 illus. in color.
Series SpringerBriefs in Neuroscience
SpringerBriefs in Neuroscience
Subject Natural sciences, medicine, IT, technology > Biology > Genetics, genetic engineering

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.