Fr. 237.00

Handbook of Combinatorial Optimization - Supplement Volume B

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Combinatorial (or discrete) optimization is one of the most active fields in the interface of operations research, computer science, and applied ma- ematics. Combinatorial optimization problems arise in various applications, including communications network design, VLSI design, machine vision, a- line crew scheduling, corporate planning, computer-aided design and m- ufacturing, database query design, cellular telephone frequency assignment, constraint directed reasoning, and computational biology. Furthermore, combinatorial optimization problems occur in many diverse areas such as linear and integer programming, graph theory, artificial intelligence, and number theory. All these problems, when formulated mathematically as the minimization or maximization of a certain function defined on some domain, have a commonality of discreteness. Historically, combinatorial optimization starts with linear programming. Linear programming has an entire range of important applications including production planning and distribution, personnel assignment, finance, allo- tion of economic resources, circuit simulation, and control systems. Leonid Kantorovich and Tjalling Koopmans received the Nobel Prize (1975) for their work on the optimal allocation of resources. Two important discov- ies, the ellipsoid method (1979) and interior point approaches (1984) both provide polynomial time algorithms for linear programming. These al- rithms have had a profound effect in combinatorial optimization. Many polynomial-time solvable combinatorial optimization problems are special cases of linear programming (e.g. matching and maximum flow). In ad- tion, linear programming relaxations are often the basis for many appro- mation algorithms for solving NP-hard problems (e.g. dual heuristics).

List of contents

Data Correcting Algorithms in Combinatorial Optimization.- The Steiner Ratio of Banach-Minkowski spaces - A Survey.- Probabilistic Verification and Non-Approximability.- Steiner Trees in Industry.- Network-based Models and Algorithms in Data Mining and Knowledge Discovery.- The Generalized Assignment Problem and Extensions.- Optimal Rectangular Partitions.- Connected Dominating Set in Sensor Networks and MANETs.

Summary

Combinatorial (or discrete) optimization is one of the most active fields in the interface of operations research, computer science, and applied ma- ematics. Combinatorial optimization problems arise in various applications, including communications network design, VLSI design, machine vision, a- line crew scheduling, corporate planning, computer-aided design and m- ufacturing, database query design, cellular telephone frequency assignment, constraint directed reasoning, and computational biology. Furthermore, combinatorial optimization problems occur in many diverse areas such as linear and integer programming, graph theory, artificial intelligence, and number theory. All these problems, when formulated mathematically as the minimization or maximization of a certain function defined on some domain, have a commonality of discreteness. Historically, combinatorial optimization starts with linear programming. Linear programming has an entire range of important applications including production planning and distribution, personnel assignment, finance, allo- tion of economic resources, circuit simulation, and control systems. Leonid Kantorovich and Tjalling Koopmans received the Nobel Prize (1975) for their work on the optimal allocation of resources. Two important discov- ies, the ellipsoid method (1979) and interior point approaches (1984) both provide polynomial time algorithms for linear programming. These al- rithms have had a profound effect in combinatorial optimization. Many polynomial-time solvable combinatorial optimization problems are special cases of linear programming (e.g. matching and maximum flow). In ad- tion, linear programming relaxations are often the basis for many appro- mation algorithms for solving NP-hard problems (e.g. dual heuristics).

Product details

Assisted by Ding-Zh Du (Editor), Ding-Zhu Du (Editor), M Pardalos (Editor), M Pardalos (Editor), Panos M. Pardalos (Editor), Ding-Zhu Du (Co-editor), Panos M. Pardalos (Co-editor)
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 21.10.2010
 
EAN 9781441936660
ISBN 978-1-4419-3666-0
No. of pages 394
Dimensions 156 mm x 21 mm x 234 mm
Weight 609 g
Illustrations VIII, 394 p.
Subjects Natural sciences, medicine, IT, technology > Mathematics > Miscellaneous
Social sciences, law, business > Business > Management

Operations Research, A, computer science, Computer Science, general, Combinatorics, Mathematics and Statistics, Management & management techniques, Operations Research, Management Science, Systems Theory, Control, Discrete Mathematics, Management science, Combinatorics & graph theory, System Theory, Cybernetics & systems theory

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.