Read more
Informationen zum Autor Kambiz Vafai is a professor of mechanical engineering at the University of California, Riverside. With over 4,000 ISI citations to his name, Dr. Vafai is the author or coauthor of more than 200 archival journal articles, thirteen book chapters, and eighteen symposium volumes as well as the editor of three books. He is also an editorial advisory board member of several journals and editor-in-chief of the Journal of Porous Media and Reviews in Porous Media — an International Journal . He has worked on a multitude of fundamental research investigations, a number of which have addressed some pertinent concepts presented for the first time. Zusammenfassung Examining the applications of porous media modeling to biomedical and biological sciences, this book covers various transport processes, mechanical behavior, and material properties of biological tissues. It illustrates the role of porous media modeling in describing biomedical and biological processes and addressing few challenging issues. Inhaltsverzeichnis A General Set of Bioheat Equations Based on the Volume Averaging Theory. Mathematical Models of Mass Transfer in Tissue for Molecular Medicine with Reversible Electroporation. Hydrodynamics in Porous Media with Applications to Tissue Engineering. Biomedical Implications of the Porosity of Microbial Biofilms. Influence of Biofilms on Porous Media Hydrodynamics. Using Porous Media Theory to Determine the Coil Volume Needed to Arrest Flow in Brain Aneurysms. Lagrangian Particle Methods for Biological Systems. Passive Mass Transport Processes in Cellular Membranes and Their Biophysical Implications. Skin Electroporation: Modeling Perspectives. Application of Porous Media Theories in Marine Biological Modeling. The Transport of Insulin-Like Growth Factor through Cartilage. Biotechnological and Biomedical Applications of Magnetically Stabilized and Fluidized Beds. In Situ Characterizations of Porous Media for Applications in Biofuel Cells: Issues and Challenges. Spatial Pattern Formation of Motile Microorganisms: From Gravitactic Bioconvection to Protozoan Culture Dynamics. ...