Fr. 135.00

Models of Science Dynamics - Encounters Between Complexity Theory and Information Sciences

English · Hardback

Shipping usually within 6 to 7 weeks

Description

Read more

Models of Science Dynamics aims to capture the structure and evolution of science, the emerging arena in which scholars, science and the communication of science become themselves the basic objects of research. In order to capture the essence of phenomena as diverse as the structure of co-authorship networks or the evolution of citation diffusion patterns, such models can be represented by conceptual models based on historical and ethnographic observations, mathematical descriptions of measurable phenomena, or computational algorithms. Despite its evident importance, the mathematical modeling of science still lacks a unifying framework and a comprehensive study of the topic. This volume fills this gap, reviewing and describing major threads in the mathematical modeling of science dynamics for a wider academic and professional audience. The model classes presented cover stochastic and statistical models, system-dynamics approaches, agent-based simulations, population-dynamics models, and complex-network models. The book comprises an introduction and a foundational chapter that defines and operationalizes terminology used in the study of science, as well as a review chapter that discusses the history of mathematical approaches to modeling science from an algorithmic-historiography perspective. It concludes with a survey of remaining challenges for future science models and their relevance for science and science policy.

List of contents

Part I Foundations.- An Introduction to Modeling Science: Basic Model Types, Key Definitions, and a General Framework for the Comparison of Process Models.- Mathematical Approaches to Modeling Science From an Algorithmic-historiography Perspectice.- Part II Exemplary Model Type.- Knowledge Epidemics and Population Dynamics Models for Describing Idea Diffusion.- Agent-based Models of Science.- Evolutionary Game Theory and Complex Networks of Scientific Information.- Part III Exemplary Model Applications.- Dynamic Scientific Co-authorship Networks.- Citation Networks.- Part IV Outlook.- Science Policy and the Challenges for Modeling Science.- Index.

Summary

Models of Science Dynamics aims to capture the structure and evolution of science, the emerging arena in which scholars, science and the communication of science become themselves the basic objects of research. In order to capture the essence of phenomena as diverse as the structure of co-authorship networks or the evolution of citation diffusion patterns, such models can be represented by conceptual models based on historical and ethnographic observations, mathematical descriptions of measurable phenomena, or computational algorithms. Despite its evident importance, the mathematical modeling of science still lacks a unifying framework and a comprehensive study of the topic. This volume fills this gap, reviewing and describing major threads in the mathematical modeling of science dynamics for a wider academic and professional audience. The model classes presented cover stochastic and statistical models, system-dynamics approaches, agent-based simulations, population-dynamics models, and complex-network models. The book comprises an introduction and a foundational chapter that defines and operationalizes terminology used in the study of science, as well as a review chapter that discusses the history of mathematical approaches to modeling science from an algorithmic-historiography perspective. It concludes with a survey of remaining challenges for future science models and their relevance for science and science policy.

Additional text

From the reviews:
“The book is a comprehensive review of the mathematical models of science from its origins. … each chapter has ‘checkpoints’, i.e., a box or a table presenting either a list of relevant questions together with short answers or a summary of the key-points discussed. This particular structure makes the book especially suited for graduate students and scholars … . experts will surely appreciate the richness and depth of the cited literature, for the first time so well organized into a single book.” (Stefano Balietti, Journal of Artificial Societies and Social Simulation, Vol. 15 (3), 2012)

Report

From the reviews:
"The book is a comprehensive review of the mathematical models of science from its origins. ... each chapter has 'checkpoints', i.e., a box or a table presenting either a list of relevant questions together with short answers or a summary of the key-points discussed. This particular structure makes the book especially suited for graduate students and scholars ... . experts will surely appreciate the richness and depth of the cited literature, for the first time so well organized into a single book." (Stefano Balietti, Journal of Artificial Societies and Social Simulation, Vol. 15 (3), 2012)

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.