Fr. 179.00

Principles of Nonparametric Learning

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

The book provides systematic in-depth analysis of nonparametric learning. It covers the theoretical limits and the asymptotical optimal algorithms and estimates, such as pattern recognition, nonparametric regression estimation, universal prediction, vector quantization, distribution and density estimation and genetic programming.The book is mainly addressed to postgraduates in engineering, mathematics, computer science, and researchers in universities and research institutions.

List of contents

Pattern classification and learning theory (G. Lugosi).- Nonparametric regression estimation (L. Györfi, M. Kohler).- Universal prediction (N. Cesa-Bianchi).- Learning-theoretic methods in vector quantization (T. Linder).- Distribution and density estimation (L. Devroye, L. Györfi).- Programming applied to model identification (M. Sebag)

Summary

The book provides systematic in-depth analysis of nonparametric learning. It covers the theoretical limits and the asymptotical optimal algorithms and estimates, such as pattern recognition, nonparametric regression estimation, universal prediction, vector quantization, distribution and density estimation and genetic programming.
The book is mainly addressed to postgraduates in engineering, mathematics, computer science, and researchers in universities and research institutions.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.