Read more
The aim of the book is to give a clear picture of some new modern trends in composite mechanics and to give a presentation of the current state-of-the-art of the theory and application of composite laminates. The book addresses the basics as well as recent developments in the theory of laminates and their effective properties, the problem of testing and identification of properties, strength, damage, and failure of composite laminates, lightweight construction principles, optimization techniques, the generation of smart structures, and a number of special technical aspects (e.g. stress localization), their modelling and analysis. The intention of the book is to provide deeper understanding, to give mathematical and algorithmic techniques for analysis, simulation and optimization and to link various aspects of composite mechanics as necessary to exploit the full potential that is possible for composite structures.
List of contents
Single Layer Modelling and Effective Stiffness Estimations of Laminated Plates (H. Altenbach, J. Meenen).-Accurate Stress Analysis of Laminated Composite Structures (K. P. Soldatos).-Aspects of Application: Free Edges, Laminate Holes, and Optimal Topology (W. Becker, H. Engels, W. Hansel, J. Lindemann).-Identification of Mechanical Properties of Laminates (R. Rikards).-Optimization of Laminated Composites and Overview of Smart Material Applications (S. Adali).-Fatigue of Composite Materials (R. Talreja)
About the author
Prof. Dr.-Ing. habil. Holm Altenbach lehrt Technische Mechanik an der Otto-von-Guericke-Universität Magdeburg. Seine Forschungsschwerpunkte liegen auf verschiedenen Gebieten der Kontinuumsmechanik (Plattentheorie, Kriechschädigungsmechanik, Mechanik der Komposite).
Summary
The aim of the book is to give a clear picture of some new modern trends in composite mechanics and to give a presentation of the current state-of-the-art of the theory and application of composite laminates. The book addresses the basics as well as recent developments in the theory of laminates and their effective properties, the problem of testing and identification of properties, strength, damage, and failure of composite laminates, lightweight construction principles, optimization techniques, the generation of smart structures, and a number of special technical aspects (e.g. stress localization), their modelling and analysis. The intention of the book is to provide deeper understanding, to give mathematical and algorithmic techniques for analysis, simulation and optimization and to link various aspects of composite mechanics as necessary to exploit the full potential that is possible for composite structures.