Fr. 188.00

Light, Water, Hydrogen - The Solar Generation of Hydrogen by Water Photoelectrolysis

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

In addition to domestic animals the earliest records of mankind indicate that slavery, until the use of coal became widespread, has always been a significant aspect, or part, of nearly every society. Consider for example ancient Attica (Greece), in which 115,000 out of a total population of 315,000 were slaves [1]. For the lucky rulers slaves represented power, Joule/second or Watt. On a steady state basis a healthy adult generates about 100 Watts, or 100 J/s, while a highly conditioned endurance athlete can generate about 300 W for perhaps an hour. Today we obtain our energy from fossil fuels, that magical brew of latent-heat chemistry that allows us to run the world without having to rely on people or domestic animal power. We owe much if not all of modern civilization to fossil fuels, no more than stored solar energy, which provide the 40-plus Terawatts that annually powers the ? 7,000,000,000 people on this planet, with our fossil fuel burn rate growing to accommodate the annual increase of some additional 100,000,000 or so souls. The foundation of modern society is a pile (lake) of priceless, irreplaceable fossil fuel that, by any measure of the energy you get and what you pay, is all intents free, and being virtually free we have and continue to burn our way through it as fast as we possibly can. It is the tragedy of the (fossil fuel) commons.

List of contents

From Hydrocarbons to Hydrogen: Towards a Sustainable Future.- Hydrogen Generation by Water Splitting.- Photoelectrolysis.- Oxide Semiconducting Materials as Photoanodes.- Oxide Semiconductors Nano-Crystalline Tubular and Porous Systems.- Oxide Semiconductors: Suspended Nanoparticle Systems.- Non-Oxide Semiconductor Nanostructures.- Photovoltaic - Electrolysis Cells.

About the author

Craig A. Grimes received B.S. degrees in Electrical Engineering and Physics from the Pennsylvania State University in 1984, and the Ph.D. degree in Electrical and Computer Engineering from the University of Texas at Austin in 1990.  In 1990 he joined the Lockheed Palo Alto Research Laboratory where he worked on artificial dielectric structures.  From 1994 to 2001 Dr. Grimes was a member of the Electrical and Computer Engineering Department at the University of Kentucky, where he was the Frank J. Derbyshire Professor.  He is currently a Professor at the Pennsylvania State University, University Park.  His research interests include solar generation of hydrogen by water photoelectrolysis, remote query chemical and environmental sensors, nano-dimensional metal-oxide thin film architectures, and propagation and control of electromagnetic energy.  He has contributed over 150 archival journal publications, eight book chapters, and over fifteen patents.  He is Editor-in-Chief of Sensor Letters, co-author of the book The Electromagnetic Origin of Quantum Theory and Light published by World Scientific (2nd Edition, 2005), and Editor of The Encyclopedia of Sensors to be published by American Scientific Publishing in 2005.

Summary

In addition to domestic animals the earliest records of mankind indicate that slavery, until the use of coal became widespread, has always been a significant aspect, or part, of nearly every society. Consider for example ancient Attica (Greece), in which 115,000 out of a total population of 315,000 were slaves [1]. For the lucky rulers slaves represented power, Joule/second or Watt. On a steady state basis a healthy adult generates about 100 Watts, or 100 J/s, while a highly conditioned endurance athlete can generate about 300 W for perhaps an hour. Today we obtain our energy from fossil fuels, that magical brew of latent-heat chemistry that allows us to run the world without having to rely on people or domestic animal power. We owe much if not all of modern civilization to fossil fuels, no more than stored solar energy, which provide the 40-plus Terawatts that annually powers the ? 7,000,000,000 people on this planet, with our fossil fuel burn rate growing to accommodate the annual increase of some additional 100,000,000 or so souls. The foundation of modern society is a pile (lake) of priceless, irreplaceable fossil fuel that, by any measure of the energy you get and what you pay, is all intents free, and being virtually free we have and continue to burn our way through it as fast as we possibly can. It is the tragedy of the (fossil fuel) commons.

Additional text

From the reviews:

"The ‘Holy Grail’ of artificial photosynthesis, particularly for hydrogen production, is often traced … . This book deals with this field, largely from the point-of-view of solid-state synthesis and engineering. … The book is useful for getting brief descriptions of the huge literature on oxide semiconductors prepared in different ways and their behavior. … if oxide materials, and especially TiO2 nanostructures, are of major interest, this book will be useful in traversing the massive literature in this field." (Allen J. Bard, Journal of the American Chemical Society, Vol. 130 (26), 2008)

"Grimes and colleagues (all, Pennsylvania State Univ.) have done a marvelous, meticulous job of collecting the latest developments in hydrogen evolution by nontraditional means to prepare the reader to understand and appreciate the importance of semiconductor photoelectrolysis in the energy future. … The logically developed chapters are copiously referenced (more than 1,000 references listed) and liberally annotated with graphs, tables, and other illustrative diagrams. Summing Up: Highly recommended. Upper-division undergraduate through professional collections." (S. R. Walk, CHOICE, Vol. 45 (11), July, 2008)

Report

From the reviews:

"The 'Holy Grail' of artificial photosynthesis, particularly for hydrogen production, is often traced ... . This book deals with this field, largely from the point-of-view of solid-state synthesis and engineering. ... The book is useful for getting brief descriptions of the huge literature on oxide semiconductors prepared in different ways and their behavior. ... if oxide materials, and especially TiO2 nanostructures, are of major interest, this book will be useful in traversing the massive literature in this field." (Allen J. Bard, Journal of the American Chemical Society, Vol. 130 (26), 2008)
"Grimes and colleagues (all, Pennsylvania State Univ.) have done a marvelous, meticulous job of collecting the latest developments in hydrogen evolution by nontraditional means to prepare the reader to understand and appreciate the importance of semiconductor photoelectrolysis in the energy future. ... The logically developed chapters are copiously referenced (more than 1,000 references listed) and liberally annotated with graphs, tables, and other illustrative diagrams. Summing Up: Highly recommended. Upper-division undergraduate through professional collections." (S. R. Walk, CHOICE, Vol. 45 (11), July, 2008)

Product details

Assisted by Craig Grimes (Editor), Craig A. Grimes (Editor), Sudhir Ranjan (Editor), OOMMA VARGHESE (Editor), OOMMAN VARGHESE (Editor), Oomman K. Varghese (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 22.10.2010
 
EAN 9781441941145
ISBN 978-1-4419-4114-5
No. of pages 546
Dimensions 156 mm x 29 mm x 234 mm
Weight 849 g
Illustrations XXII, 546 p.
Subjects Natural sciences, medicine, IT, technology > Technology > Heat, energy and power station engineering

Laser, B, engineering, Energy Policy, Economics and Management, Lasers, Renewable and Green Energy, Optical and Electronic Materials, Nanotechnology, Optical physics, Electronic materials, Electronic devices & materials, Optical Materials, Photonics, Applied optics, Optics, Lasers, Photonics, Optical Devices, Renewable energy resources

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.