Fr. 282.00

Dielectric Elastomers As Electromechanical Transducers - Fundamentals, Materials, Devices, Models Applications of an Emerging

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

Informationen zum Autor Federico Carpi received the Laurea degree in Electronic Engineering in 2001 and the Ph.D degree in Bioengineering in 2005 from the University of Pisa, Italy. He currently has a post-doctoral position at the Interdepartmental Research Centre “E. Piaggio? of the University of Pisa. His main research activities are focused on polymer materials and devices for biomedical engineering and robotics. Danilo Emilio De Rossi received the Laurea degree in Chemical Engineering from the University of Genoa in 1976. He was researcher of the Institute of Clinical Physiology of C.N.R., Italy until 1981. Since 1982 he has been working in the School of Engineering of the University of Pisa, where he is presently Full Professor of Bioengineering. His scientific activities are related to the physics of organic and polymeric materials, and to the design of sensors and actuators for bioengineering and robotics. Roy Kornbluh is a Senior Research Engineer at SRI International, where he has worked for the past 20 years. Recognizing the need for a new generation of robotic actuators, Mr. Kornbluh helped conceive dielectric elastomer artificial muscle. He has authored more than 40 papers on dielectric elastomers and is active in the electroactive polymer research community. Ron Pelrine is a principal inventor of dielectric elastomer transducers and has been active in the field since 1992. Along with other researchers at SRI International, Dr. Pelrine laid the foundations of dielectric elastomer transduction, and was the first to discover both silicone and acrylic as dielectric elastomer materials. Klappentext This book provides a comprehensive and updated insight on dielectric elastomers; one of the most promising classes of polymer-based smart materials and technologies. This technology can be used in a very broad range of applications! spanning from robotics and automation to the biomedical field. * Concise and comprehensive treatment for practitioners and academics* Guides the reader through the latest developments in electroactive-polymer-based technology* Designed for ease of use with sections on fundamentals! materials! devices! models and applications* Contains chapters written by recognised leading scholars and industry experts Zusammenfassung Offers a comprehensive insight into dielectric elastomer transduction! covering its fundamental aspects. This book deals with transduction principles! basic materials properties! design of efficient device architectures! material and device modelling! along with applications. Inhaltsverzeichnis Introduction - History of dielectric elastomer actuators; Electromechanical transduction effects in dielectric elastomers; Dielectric elastomers as high-performance electroactive polymers; Physical and chemical properties of dielectric elastomers; High-performance acrylic and silicone elastomers; Interpenetrating polymer networks as high performance dielectric elastomers; Enhancing the dielectric permittivity of elastomers; Compliant electrodes; Fundamental configurations for dielectric elastomer actuators; Multiple-degrees-of-freedom roll actuators; Actuators and sensors from dielectric elastomer with smart compliant electrodes; Multilayer stack contractile actuators; Contractile monolithic linear actuators; Buckling actuators with integrated displacement sensor; Variable stiffness mode; Generator mode: devices and applications; Finite-elasticity models of actuation; Modeling of prestrained circular actuators; Modeling dielectric elastomer membranes; Biomedical, haptic and micro-scale applications; A new frontier for orthotics and prosthetics; Portable force feedback device based on miniature rolled dielectric elastomer actuators; Programmable surface deformation; Application to very small devices; A new Braille display system design using a polymer based soft actuator tactile display; Robotic and biorobotic app...

List of contents

Introduction - History of dielectric elastomer actuators; Electromechanical transduction effects in dielectric elastomers; Dielectric elastomers as high-performance electroactive polymers; Physical and chemical properties of dielectric elastomers; High-performance acrylic and silicone elastomers; Interpenetrating polymer networks as high performance dielectric elastomers; Enhancing the dielectric permittivity of elastomers; Compliant electrodes; Fundamental configurations for dielectric elastomer actuators; Multiple-degrees-of-freedom roll actuators; Actuators and sensors from dielectric elastomer with smart compliant electrodes; Multilayer stack contractile actuators; Contractile monolithic linear actuators; Buckling actuators with integrated displacement sensor; Variable stiffness mode; Generator mode: devices and applications; Finite-elasticity models of actuation; Modeling of prestrained circular actuators; Modeling dielectric elastomer membranes; Biomedical, haptic and micro-scale applications; A new frontier for orthotics and prosthetics; Portable force feedback device based on miniature rolled dielectric elastomer actuators; Programmable surface deformation; Application to very small devices; A new Braille display system design using a polymer based soft actuator tactile display; Robotic and biorobotic applications; Biomimetic robots; Micro-annelid-like robot actuated by artificial muscles based on dielectric elastomers; Binary actuation; Robotic arm; Stiffness control of biomimetic systems through recruitment of bundle elastomeric actuators; Commercial applications; Commercial actuators and issues; Dielectric elastomer loudspeakers.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.