Fr. 70.00

Courbes Algébriques Planes

French · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Issu d'un cours de maîtrise de l'Université Paris VII, ce texte est réédité tel qu'il était paru en 1978. A propos du théorème de Bézout sont introduits divers outils nécessaires au développement de la notion de multiplicité d'intersection de deux courbes algébriques dans le plan projectif complexe. Partant des notions élémentaires sur les sous-ensembles algébriques affines et projectifs, on définit les multiplicités d'intersection et interprète leur somme entermes du résultant de deux polynômes. L'étude locale est prétexte à l'introduction des anneaux de série formelles ou convergentes ; elle culmine dans le théorème de Puiseux dont la convergence est ramenée par des éclatements à celle du théorème des fonctions implicites. Diverses figures éclairent le texte: on y "voit" en particulier que l'équation homogène x3+y3+z3 = 0 définit un tore dans le plan projectif complexe.

 

List of contents

Ensembles algébriques affines.- Courbes planes affines.- Ensembles algébriques projectifs.- Courbes projectives planes : le théorème de Bézout.- Le résultant.- Point de vue local: anneaux de séries formelles.- Anneaux de séries convergentes.- Le théorème de Puiseux.- Théorie locale des intersections de courbes.

About the author

Sous-ensembles algébriques de C.- Ensembles algébriques affines.- Courbes planes affines.- Ensembles algébriques projectifs.- Courbes projectives planes : le théorème de Bezout.- Le résultant.- Point de vue local : anneaux de series formelles.- Anneaux de series convergentes.- Le théorème de Puiseux.- Théorie locale des intersections de courbes.

Summary

Issu d’un cours de maîtrise de l’Université Paris VII, ce texte est réédité tel qu’il était paru en 1978. A propos du théorème de Bézout sont introduits divers outils nécessaires au développement de la notion de multiplicité d’intersection de deux courbes algébriques dans le plan projectif complexe. Partant des notions élémentaires sur les sous-ensembles algébriques affines et projectifs, on définit les multiplicités d’intersection et interprète leur somme entermes du résultant de deux polynômes. L’étude locale est prétexte à l’introduction des anneaux de série formelles ou convergentes ; elle culmine dans le théorème de Puiseux dont la convergence est ramenée par des éclatements à celle du théorème des fonctions implicites. Diverses figures éclairent le texte: on y "voit" en particulier que l’équation homogène x3+y3+z3 = 0définit un tore dans le plan projectif complexe.

 

Additional text

From the reviews:

"The book contains an introduction to the theory of algebraic plane curves, in a form suitable for a first course in Algebraic Geometry at undergraduate/graduate level. … Using the basic properties of polynomial rings, the author introduces algebraic sets in the plane, irreducible components and local analysis by means of localisations of the coordinate rings. … the author presents the local theory of singularities and intersection multiplicities, using as his basic tool the Puiseux expansions at a point." (Luca Chiantini, Zentralblatt MATH, Vol. 1133 (11), 2008)

Report

From the reviews:

"The book contains an introduction to the theory of algebraic plane curves, in a form suitable for a first course in Algebraic Geometry at undergraduate/graduate level. ... Using the basic properties of polynomial rings, the author introduces algebraic sets in the plane, irreducible components and local analysis by means of localisations of the coordinate rings. ... the author presents the local theory of singularities and intersection multiplicities, using as his basic tool the Puiseux expansions at a point." (Luca Chiantini, Zentralblatt MATH, Vol. 1133 (11), 2008)

Product details

Authors Alain Chenciner
Publisher Springer, Berlin
 
Languages French
Product format Paperback / Softback
Released 11.08.2009
 
EAN 9783540337072
ISBN 978-3-540-33707-2
No. of pages 160
Dimensions 157 mm x 11 mm x 236 mm
Weight 286 g
Illustrations X, 160 p.
Subjects Natural sciences, medicine, IT, technology > Mathematics > Arithmetic, algebra

C, Mathematics and Statistics, Algebraic Geometry, théorème de Puiseux, singularités, théorème de Bézout, polygone de Newton

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.