Share
Fr. 1,064.00
Ke Chen, Carola-Bibiane Schönlieb, Xue-Cheng Tai, Xue-Cheng Tai et al, Laurent Younes
Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging: Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging, 3 Teile - Mathematical Imaging and Vision
English · Hardback
Shipping usually within 2 to 3 weeks (title will be printed to order)
Description
This handbook gathers together the state of the art on mathematical models and algorithms for imaging and vision. Its emphasis lies on rigorous mathematical methods, which represent the optimal solutions to a class of imaging and vision problems, and on effective algorithms, which are necessary for the methods to be translated to practical use in various applications. Viewing discrete images as data sampled from functional surfaces enables the use of advanced tools from calculus, functions and calculus of variations, and nonlinear optimization, and provides the basis of high-resolution imaging through geometry and variational models. Besides, optimization naturally connects traditional model-driven approaches to the emerging data-driven approaches of machine and deep learning. No other framework can provide comparable accuracy and precision to imaging and vision.
Written by leading researchers in imaging and vision, the chapters in this handbook all start with gentle introductions, which make this work accessible to graduate students. For newcomers to the field, the book provides a comprehensive and fast-track introduction to the content, to save time and get on with tackling new and emerging challenges. For researchers, exposure to the state of the art of research works leads to an overall view of the entire field so as to guide new research directions and avoid pitfalls in moving the field forward and looking into the next decades of imaging and information services. This work can greatly benefit graduate students, researchers, and practitioners in imaging and vision; applied mathematicians; medical imagers; engineers; and computer scientists.
List of contents
1. An Overview of SaT Segmentation Methodology and Its Applications in Image Processing.- 2. Analysis of different losses for deep learning image colorization.- 3. Blind phase retrieval with fast algorithms.- 4. Bregman Methods for Large-Scale Optimisation with Applications in Imaging.- 5. Connecting Hamilton-Jacobi Partial Differential Equations with Maximum a Posteriori and Posterior Mean Estimators for Some Non-convex Priors.- 6. Convex non-Convex Variational Models.- 7. Data-Informed Regularization for Inverse and Imaging Problems.- 8. Diffraction Tomography, Fourier Reconstruction, and Full Waveform Inversion.- 9. Domain Decomposition for Non-smooth (in Particular TV) Minimization.- 10. Fast numerical methods for image segmentation models.
About the author
Ke Chen received his B.Sc., M.Sc. and Ph.D. degrees in Applied Mathematics, respectively, from the Dalian University of Technology (China), University of Manchester (UK) and University of Plymouth (UK). Dr. Chen is a computational mathematician specialised in developing novel and fast numerical algorithms for various scientific computing (especially imaging) applications. He has been the Director of a Multidisciplinary Research Centre for Mathematical Imaging Techniques (CMIT) since 2007, and the Director of the EPSRC Liverpool Centre of Mathematics in Healthcare (LCMH) since 2015. He heads a large group of computational imagers, tackling novel analysis of real-life images. His group's imaging work in variational modelling and algorithmic development is mostly interdisciplinary, strongly motivated by emerging real-life problems and their challenges: image restoration, image inpainting, tomography, image segmentation and registration.
Carola graduated from the Institute for Mathematics, University of Salzburg (Austria) in 2004. From 2004 to 2005 she held a teaching position in Salzburg. She received her PhD degree from the University of Cambridge (UK) in 2009. After one year of postdoctoral activity at the University of Göttingen (Germany), she became a Lecturer at Cambridge in 2010, promoted to Reader in 2015 and promoted to Professor in 2018.
Product details
Assisted by | Ke Chen (Editor), Carola-Bibiane Schönlieb (Editor), Xue-Cheng Tai (Editor), Xue-Cheng Tai et al (Editor), Laurent Younes (Editor) |
Publisher | Springer, Berlin |
Languages | English |
Product format | Hardback |
Released | 25.02.2023 |
EAN | 9783030986605 |
ISBN | 978-3-0-3098660-5 |
No. of pages | 1984 |
Illustrations | XXVI, 1984 p. 553 illus., 408 illus. in color. In 3 volumes, not available separately. |
Set |
Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging |
Subject |
Natural sciences, medicine, IT, technology
> Mathematics
> Probability theory, stochastic theory, mathematical statistics
|
Customer reviews
No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.
Write a review
Thumbs up or thumbs down? Write your own review.