Fr. 150.00

Environmental Data Analysis With Matlab Or Python - Principles, Applications, and Prospects

English · Paperback / Softback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more










Previous edition: published as by William Menke, Joshua Menke. 2016.

List of contents










1. Data Analysis with MATLAB or Python 2. Systematic explorations of a new dataset 3. Modeling observational noise with random variables 4. Linear models as the foundation of data analysis 5. Least squares with prior information 6. Detecting periodicities with Fourier analysis 7. Modeling time-dependent behavior with filters 8. Undirected data analysis using factors, empirical orthogonal functions and clusters 9. Detecting and understanding correlations among data 10. Interpolation, Gaussian Process Regression and Kriging 11. Approximate methods, including linearization and artificial neural networks 12. Assessing the significance of results


About the author

William Menke is a Professor of Earth and Environmental Sciences at Columbia University. His research focuses on the development of data analysis algorithms for time series analysis and imaging in the earth and environmental sciences and the application of these methods to volcanoes, earthquakes, and other natural hazards. He has thirty years of experience teaching data analysis methods to both undergraduates and graduate students. Relevant courses that he has taught include, at the undergraduate level, Environmental Data Analysis and The Earth System, and at the graduate level, Geophysical Inverse Theory, Quantitative Methods of Data Analysis, Geophysical Theory and Practical Seismology.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.