Fr. 136.00

Thermodynamic Degradation Science - Physics of Failure, Accelerated Testing, Fatigue, Reliability

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

Informationen zum Autor Alec Feinberg, DfR Software Company, Raleigh, NC, USA Dr. Feinberg has a Ph.D. in Physics and provides engineering services in all areas of reliability. He also provides consultancy services for: Reliability Test and Analysis, Accelerated Testing, HALT, FMEA, Quality statistics, corrosion analysis and Thermodynamic Modeling. Alec has presented numerous technical papers and won the 2003 RAMS Alan O. Plait best tutorial award for the topic, Thermodynamic Reliability Engineering. Klappentext Thermodynamic degradation science is a new and exciting discipline. This book merges the science of physics of failure with thermodynamics and shows how degradation modeling is improved and enhanced when using thermodynamic principles. The author also goes beyond the traditional physics of failure methods and highlights the importance of having new tools such as "Mesoscopic" noise degradation measurements for prognostics of complex systems, and a conjugate work approach to solving physics of failure problems with accelerated testing applications. Key features: - Demonstrates how the thermodynamics energy approach uncovers key degradation models and their application to accelerated testing. - Demonstrates how thermodynamic degradation models accounts for cumulative stress environments, effect statistical reliability distributions, and are key for reliability test planning. - Provides coverage of the four types of Physics of Failure processes describing aging: Thermal Activation Processes, Forced Aging, Diffusion, and complex combinations of these. - Coverage of numerous key topics including: aging laws; Cumulative Accelerated Stress Test (CAST) Plans; cumulative entropy fatigue damage; reliability statistics and environmental degradation and pollution. Thermodynamic Degradation Science: Physics of Failure, Accelerated Testing, Fatigue and Reliability Applications is essential reading for reliability, cumulative fatigue, and physics of failure engineers as well as students on courses which include thermodynamic engineering and/or physics of failure coverage. Zusammenfassung Thermodynamic degradation science is a new and exciting discipline. This book merges the science of physics of failure with thermodynamics and shows how degradation modeling is improved and enhanced when using thermodynamic principles. Inhaltsverzeichnis List of Figures xiii List of Tables xvi About the Author xvii Preface xviii 1 Equilibrium Thermodynamic Degradation Science 1 1.1 Introduction to a New Science 1 1.2 Categorizing Physics of Failure Mechanisms 2 1.3 Entropy Damage Concept 3 1.3.1 The System (Device) and its Environment 4 1.3.2 Irreversible Thermodynamic Processes Cause Damage 5 1.4 Thermodynamic Work 6 1.5 Thermodynamic State Variables and their Characteristics 7 1.6 Thermodynamic Second Law in Terms of System Entropy Damage 9 1.6.1 Thermodynamic Entropy Damage Axiom 11 1.6.2 Entropy and Free Energy 13 1.7 Work, Resistance, Generated Entropy, and the Second Law 14 1.8 Thermodynamic Catastrophic and Parametric Failure 16 1.8.1 Equilibrium and Non-Equilibrium Aging States in Terms of the Free Energy or Entropy Change 16 1.9 Repair Entropy 17 1.9.1 Example 1.1: Repair Entropy: Relating Non-Damage Entropy Flow to Entropy Damage 17 Summary 18 References 22 2 Applications of Equilibrium Thermodynamic Degradation to Complex and Simple Systems: Entropy Damage, Vibration, Temperature, Noise Analysis, and Thermodynamic Potentials 23 2.1 Cumulative Entropy Damage Approach in Physics of Failure 23 2.1.1 Example 2.1: Miner's Rule Derivation 25 2.1.2 Example 2.2: Miner's Rule Example 26 2.1.3 Non-Cyclic Applications of ...

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.