CHF 77.00

Zeta Functions of Groups and Rings

Inglese · Tascabile

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

Thestudyofthesubgroupgrowthofin?nitegroupsisanareaofmathematical research that has grown rapidly since its inception at the Groups St. Andrews conferencein1985.Ithasbecomearichtheoryrequiringtoolsfromandhaving applications to many areas of group theory. Indeed, much of this progress is chronicled by Lubotzky and Segal within their book [42]. However, one area within this study has grown explosively in the last few years. This is the study of the zeta functions of groups with polynomial s- groupgrowth,inparticularfortorsion-free?nitely-generatednilpotentgroups. These zeta functions were introduced in [32], and other key papers in the - velopment of this subject include [10, 17], with [19, 23, 15] as well as [42] presenting surveys of the area. The purpose of this book is to bring into print signi?cant and as yet unpublished work from three areas of the theory of zeta functions of groups. First, there are now numerous calculations of zeta functions of groups by doctoralstudentsofthe?rstauthorwhichareyettobemadeintoprintedform outside their theses. These explicit calculations provide evidence in favour of conjectures, or indeed can form inspiration and evidence for new conjectures. We record these zeta functions in Chap.2. In particular, we document the functional equations frequently satis?ed by the local factors. Explaining this phenomenon is, according to the ?rst author and Segal [23], "one of the most intriguing open problems in the area".

Info autore

Marcus du Sautoy ist Professor für Mathematik an der Universität von Oxford und Research Fellow der Royal Society. Seine in der Times erscheinenden und von der BBC ausgestrahlten Beiträge über mathematische Fragen erfreuen sich großer Beliebtheit.

Riassunto

Thestudyofthesubgroupgrowthofin?nitegroupsisanareaofmathematical research that has grown rapidly since its inception at the Groups St. Andrews conferencein1985.Ithasbecomearichtheoryrequiringtoolsfromandhaving applications to many areas of group theory. Indeed, much of this progress is chronicled by Lubotzky and Segal within their book [42]. However, one area within this study has grown explosively in the last few years. This is the study of the zeta functions of groups with polynomial s- groupgrowth,inparticularfortorsion-free?nitely-generatednilpotentgroups. These zeta functions were introduced in [32], and other key papers in the - velopment of this subject include [10, 17], with [19, 23, 15] as well as [42] presenting surveys of the area. The purpose of this book is to bring into print signi?cant and as yet unpublished work from three areas of the theory of zeta functions of groups. First, there are now numerous calculations of zeta functions of groups by doctoralstudentsofthe?rstauthorwhichareyettobemadeintoprintedform outside their theses. These explicit calculations provide evidence in favour of conjectures, or indeed can form inspiration and evidence for new conjectures. We record these zeta functions in Chap.2. In particular, we document the functional equations frequently satis?ed by the local factors. Explaining this phenomenon is, according to the ?rst author and Segal [23], “one of the most intriguing open problems in the area”.

Testo aggiuntivo

From the reviews:"The book starts with a short lovely description of several classical zeta function … . It also contains a large number of examples of groups for which these zeta functions were explicitly computed. … it certainly will be a basic text for anyone who plans to work in this area. … These surely will be valuable for inspiring further developments." (Alexander Lubotzky, Mathematical Reviews, Issue 2009 d)"The purpose of this stimulating book is to bring into print significant and as yet unpublished work from different areas of the theory of zeta functions of groups. … The book will be not only a valuable reference for people working in this area, but also a fascinating reading for everybody who wants to understand the role zeta functions have in group theory and the connections between subgroup growth and algebraic geometry over finite fields revealed by this theory." (Andrea Lucchini, Zentralblatt MATH, Vol. 1151, 2009)“The authors have compiled a large body of facts and conjectures which will no doubt be most valuable for everyone working in this fascinating and very active field of research.” (C. Baxa, Monatshefte für Mathematik, Vol. 160 (3), June, 2010)

Relazione

From the reviews:

"The book starts with a short lovely description of several classical zeta function ... . It also contains a large number of examples of groups for which these zeta functions were explicitly computed. ... it certainly will be a basic text for anyone who plans to work in this area. ... These surely will be valuable for inspiring further developments." (Alexander Lubotzky, Mathematical Reviews, Issue 2009 d)
"The purpose of this stimulating book is to bring into print significant and as yet unpublished work from different areas of the theory of zeta functions of groups. ... The book will be not only a valuable reference for people working in this area, but also a fascinating reading for everybody who wants to understand the role zeta functions have in group theory and the connections between subgroup growth and algebraic geometry over finite fields revealed by this theory." (Andrea Lucchini, Zentralblatt MATH, Vol. 1151, 2009)
"The authors have compiled a large body of facts and conjectures which will no doubt be most valuable for everyone working in this fascinating and very active field of research." (C. Baxa, Monatshefte für Mathematik, Vol. 160 (3), June, 2010)

Dettagli sul prodotto

Autori Marcus du Sautoy, Luke Woodward, Marcus du Sautoy, Marcu du Sautoy
Editore Springer, Berlin
 
Lingue Inglese
Contenuto Libro
Forma del prodotto Tascabile
Data pubblicazione 14.04.2009
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Aritmetica, algebra
 
EAN 9783540747017
ISBN 978-3-540-74701-7
Numero di pagine 212
Illustrazioni XII, 212 p.
Dimensioni (della confezione) 15.8 x 23.6 x 1.3 cm
Peso (della confezione) 356 g
 
Serie Lecture Notes in Mathematics > Vol.1925
Lecture Notes in Mathematics
Categorie Algebra, B, Group Theory, Mathematics and Statistics, Number Theory, Rings (Algebra), Non-associative Rings and Algebras, Nonassociative rings, Group Theory and Generalizations, Lattice;Zeta function;algebra;group;ring
 

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.