Read more
Biological Nitrogen Fixation ist ein umfassendes zweibändiges Referenzwerk mit Reviews und Originaltexten zu Schlüsselthemen der Stickstoff-Fixierung. Der Schwerpunkt liegt bei beiden Bänden auf molekularen Verfahren und fortschrittlichen Konzepten der biochemischen Analyse mit Bezug zu den verschiedenen Aspekten der biologischen Stickstoff-Fixierung.
Band 1 untersucht die Chemie und Biochemie von Nitrogenase, nif-Genregulation, die Taxonomie, Evolution und Genomik von Organismen, die in der Lage sind Stickstoff zu fixieren, sowie deren Physiologie und Metabolismus.
Band 2 beschäftigt sich mit der symbiotischen Interaktion von stickstofffixierenden Organismen mit Wirtspflanzen, einschließlich Nodulation und symbiotische Stickstoff-Fixierung, Pflanzen- und Mikroben-"Omik", Cyanobakterien, diazotrophe Organismen und Nicht-Leguminosen, Feldstudien und Inokulationsvorbereitung, Stickstoff-Fixierung und Getreideprodukte.
Biological Nitrogen Fixation deckt sämtliche Aspekte der aktuellen Forschung in dem Fachgebiet ab und wirft einen Blick in die Zukunft. Dieses Referenzwerk bietet Experten im Bereich der mikrobiellen Ökologie und Umwelt-Mikrobiologen, Pflanzenforschern und Agrarwissenschaftler, die auf dem Gebiet der Nachhaltigkeit von Kulturpflanzen arbeiten, alles Wissenswerte zu dem Fachgebiet.
List of contents
Biological Nitrogen Fixation
VOLUME 1
Chapter 1. Introduction
Frans J. de Bruijn
Section 1. Focus Chapters
Chapter 2. Recent advances in Understanding Nitrogenases and How They Work
William Newton
Chapter 3. Evolution and Taxonomy of Nitrogen-fixing Organisms with emphasis on Rhizobia
Kristina Lindstrom
Chapter 4. Evolution of Rhizobium Nodulation: From Nodule Specific Genes (Nodulins) to Recruitment of Common Processes
Ton Bisseling
Chapter 5. Bioengineering Nitrogen Acquisition in Rice: Promises for Global Food Security
Herbert Kronzucker
Section 2. Chemistry and Biochemistry of Nitrogenases
Chapter 6. An Overview of Fe-S Protein Biogenesis from Prokaryotes to Eukaryotes
Mahipal Kesawat
Chapter 7. Biosynthesis of the Iron-Molybdenum Cofactor of Nitrogenase
Luis Rubio
Chapter 8. Distribution and Ecological Niches of Nitrogenases
Alexander Glazer
Section 3. Expression and Regulation of Nitrogen Fixation Genes and Nitrogenase
Chapter 9. Regulation of nif Gene Expression in Azotobacter vinelandii
Cesar Poza-Carrion, Luis Rubio
Chapter 10. Coupling of Regulation between Nitrogen and Carbon Metabolism in Nitrogen Fixing Pseudomonas stutzeri A1501
Lin Min
Chapter 11. Regulation of NItrogen Fixation and Molybdenum Transport in Rhodobacter capsulatus
Bernd Masepohl
Chapter 12. Metabolic Regulation of Nitrogenase Activity in Rhodospirillum rubrum: The Role of PII Proteins and Membrane Sequestration
Stefan Nordlund
Chapter 13. How Does the DraG-PII Complex Regulate Nitrogenase Activity in Azospirillum brasilense?
Xiao-Dan Li
Chapter 14. Fe Protein Over-expression Can Enhance the Nitrogenase Activity of Azotobacter vinelandii
Papri Nag
Chapter 15. FNR-like Proteins in Rhizobia: Past and Future
Lourdes Girard
Section 4. Taxonomy and Evolution of Nitrogen Fixing Organisms
Chapter 16. Exploring Alternative Paths for the Evolution of Biological Nitrogen Fixation
John Peters
Chapter 17. Phylogeny, Diversity, Geographical Distribution and Host Range of Legume-Nodulating Betaproteobacteria: What Is the Role of Plant Taxonomy?
Lionel Moulin, Euan James
Chapter 18. Bradyrhizobium, The Ancestor of All Rhizobia: Phylogeny of Housekeeping and Nitrogen-fixation Genes
Mariangela Hungria
Chapter 19. Interaction between Host and Rhizobial Strains: Affinities and Coevolution
Mario Aguilar
Chapter 20. Assessment of Nitrogenase Diversity in the Environment
Daniel Buckley
Section 5. Genomics of Nitrogen Fixing Organisms
Chapter 21. Genetic Regulation of Symbiosis Island Transfer in Mesorhizobium loti
Joshua Ramsay, Clive Ronson
Chapter 22. The Azotobacter vinelandii Genome: An Update
Joao C. Setubal
Chapter 23. The Genome Sequence of the Novel Rhizobial Species Microvirga lotononidis Strain WSM3557.
Julie Ardley
Chapter 24. Genome Characteristics of Frankia sp. Reflect Host Range and Host Plant Biogeography
Philippe Normand, David Benson
Chapter 25. Core and Accessory Henomes of The Diazotroph Azospirillum
Florence Wisniewski-Dye
Chapter 26. Pangenome Evolution in The Symbiotic Nitrogen Fixer Sinorhizobium meliloti
Marco Galardini
Chapter 27. Pangenomic Analysis of The Rhizobiales Using The GET_HOMOLOGUES Software Package
Pablo Vinuesa
Section 6. Physiology and Metabolism of Nit
About the author
Frans J. de Bruijn received his Ph.D. (Cellular and Developmental Biology; Microbial Genetics) from Harvard University in 1983. His resume reflects an array of experiences as a teacher, researcher, board member and a plethora of other accomplishments. He is currently Director of Research at the Laboratory for Plant-Microbe Interactions in Toulouse, France.
Summary
Nitrogen is arguably the most important nutrient required by plants. However, the availability of nitrogen is limited in many soils and although the earth's atmosphere consists of 78. 1% nitrogen gas (N2) plants are unable to use this form of nitrogen.