Fr. 57.50

Vorhersage von Kreditrisiken: Neuronale Netze und SVMs im Vergleich

Tedesco · Tascabile

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

Die Bewertung von Kreditrisiken spielt in der Finanzbranche eine zentrale Rolle, und Vorhersagemodelle sind für fundierte Kreditentscheidungen unerlässlich. Dieses Forschungsprojekt befasst sich mit dem Bereich der Kreditrisikobewertung, einem kritischen Aspekt der Finanzindustrie, und schlägt einen innovativen Ansatz vor, der den Algorithmus des Feed Forward Neural Network (FNN) nutzt. Das Hauptaugenmerk liegt auf dem Vergleich der Wirksamkeit des FNN-Algorithmus mit den weit verbreiteten Support Vector Machines (SVM) zur Vorhersage von Kreditrisiken. Ziel ist es, die Effektivität des FNN-Algorithmus bei der Vorhersage von Kreditausfällen zu bewerten, um ein umfassendes Verständnis seiner Leistung im Vergleich zu SVM zu erlangen. Die erzielten Ergebnisse sind vielversprechend und weisen auf eine höhere Genauigkeit des FNN-Modells im Vergleich zu SVM hin. Dies unterstreicht das Potenzial des FNN-Algorithmus, die Kreditrisikobewertung zu revolutionieren. Unsere Ergebnisse unterstreichen die Bedeutung des Einsatzes von KI und ML, insbesondere von neuronalen Netzen, um die Genauigkeit und Zuverlässigkeit von Kreditrisikoprognosesystemen zu verbessern. Die beeindruckende Leistung des FNN-Modells positioniert es als Wegbereiter in diesem Bereich, da es die Genauigkeit und Zuverlässigkeit von Kreditrisikoprognosesystemen verbessert.

Info autore










La Dra. Kirti Hemant Wanjale trabaja actualmente como profesora en el Departamento de Ingeniería Informática del Instituto Tecnológico Vishwakarma, en Pune. Obtuvo su doctorado en la Facultad de Ingeniería Informática de la SSSTUMS, en Sehore (Madhya Pradesh). Cuenta con 22 años de experiencia. Sus principales intereses de investigación son las redes de sensores inalámbricos y el Internet de las cosas.

Dettagli sul prodotto

Autori Aditya Wanjale, Kirti Wanjale
Editore Verlag Unser Wissen
 
Lingue Tedesco
Formato Tascabile
Pubblicazione 08.02.2025
 
EAN 9786208638894
ISBN 9786208638894
Pagine 60
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Teoria delle probabilità, stocastica, statistica matematica

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.