Fr. 59.50

Lie-Gruppen und Lie-Algebren

Tedesco · Tascabile

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

Dieses Buch versteht sich als Einführung in die Theorie der Lie-Gruppen. Der Begriff der Lie-Gruppen wird ausgehend von den einfachsten Beispielen, den Matrizengruppen, entwickelt. Eine große Anzahl von Problemen für Lie-Gruppen kann man durch Übertragung auf die zugehörigen Lie-Algebren lösen. Dies ist der Leitgedanke des Buches. Vorausgesetzt werden Kenntnisse in der Linearen Algebra, der Differentialrechnung mehrerer Variablen und der elementaren Gr uppentheorie.

Sommario

I Lie-Gruppen.-
I.1 Die allgemeine lineare Gruppe.-
I.2 Die Exponentialfunktion.-
I.3 Abgeschlossene Untergruppen von Gl(n,IK).-
I.4 Die Campbell-Hausdorff-Formel.-
I.5 Analytische Untergruppen.-
I.6 Bogenzusammenhängende Gruppen.-
I.7 Homomorphismen.-
I.8 Fundamentalgruppen und Überlagerungen.-
I.9 Einfach zusammenhängende Überlagerungsgruppen.- II Lie-Algebren.-
II.1 Definitionen und Beispiele.-
II.2 Nilpotente und auflösbare Lie-Algebren.-
II.3 Halbeinfache Lie-Algebren.-
II.4 Erweiterungen und Moduln.-
II.5 Lie-Algebra-Kohomologie.-
II.6 Einhüllende Algebren.-
II.7 Der Satz von Ado.- III Strukturtheorie von Lie-Gruppen.-
III.1 Analytische Mannigfaltigkeiten.-
III.2 Die Lie-Algebra und die Exponentialfunktion.-
III.3 Anwendungen der Exponentialfunktion.-
III.4 Das Haarsche Maß.-
III.5 Lie-Gruppen mit kompakter Lie-Algebra.-
III.6 Halbeinfache Lie-Gruppen.-
III.7 Maximal kompakte Untergruppen, das Zentrum und Mannigfaltigkeitsfaktoren.-
III.8 Dichte analytische Untergruppen.-
III.9 Komplexe Lie-Gruppen.-
III.10 Charakterisierung der linearen Lie-Gruppen.-
III.11 Anwendung der Theorie auf die Klassischen Gruppen.- Anhang: Topologische Grundlagen.- Lehrbücher über Lie-Gruppen und Algebren.- Symbolverzeichnis.

Info autore

Joachim Hilgert forscht und lehrt am Institut für Mathematik der Universität Paderborn.

Riassunto

Dieses Buch versteht sich als Einführung in die Theorie der Lie-Gruppen. Der Begriff der Lie-Gruppen wird ausgehend von den einfachsten Beispielen, den Matrizengruppen, entwickelt. Eine große Anzahl von Problemen für Lie-Gruppen kann man durch Übertragung auf die zugehörigen Lie-Algebren lösen. Dies ist der Leitgedanke des Buches. Vorausgesetzt werden Kenntnisse in der Linearen Algebra, der Differentialrechnung mehrerer Variablen und der elementaren Gruppentheorie.

Dettagli sul prodotto

Autori Joachi Hilgert, Joachim Hilgert, Karl-Hermann Neeb
Editore Vieweg+Teubner
 
Lingue Tedesco
Formato Tascabile
Pubblicazione 01.01.1991
 
EAN 9783528064327
ISBN 978-3-528-06432-7
Pagine 361
Dimensioni 162 mm x 21 mm x 228 mm
Peso 560 g
Illustrazioni X, 361 S. 1 Abb.
Categorie Scienze naturali, medicina, informatica, tecnica > Matematica > Aritmetica, algebra
Scienze umane, arte, musica > Pedagogia > Pedagogia scolastica, didattica, metodica

Algebra, A, Education, Lineare Algebra, Language Education, Language and education, Matrizengruppen

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.