Fr. 72.00

Über nichtlineare Differentialgleichungen 2. Ordnung, die für eine Abschätzungsmethode bei partiellen Differentialgleichungen vom elliptischen Typus besonders wichtig sind

Tedesco · Tascabile

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

Bei den im folgenden behandelten Differentialgleichungen, deren Bedeutung in Kapitel I näher dargelegt wird, gelingt es weitgehend, die Lösungen in ge schlossener Form zu ermitteln. Dennoch ist es im Hinblick auf eine allgemeine Übersicht und bezüglich des Verlaufs von Einzelkurven von großem Interesse, eine möglichst genaue graphische Darstellung anzufertigen. Aus diesem Grunde haben wir in Kapitel VI, 2 b eine Reihe von Abbildungen in die vorliegende Arbeit aufgenommen, die mit Hilfe der Integrieranlage des Rheinisch-West fälischen Institutes für Instrumentelle Mathematik in Bonn hergestellt worden sind. Die hierzu nötige Zubereitung des Problems, die Programmierung und instrumentelle Ausführung hat Herr Dr. PAUL FRIEDRICH MÜLLER, Bonn, über nommen, wofür wir ihm an dieser Stelle besonders herzlich danken möchten. Herr Dr. MÜLLER hat die dabei angewandten Verfahren in einer Vorbemerkung, die den Kurvenbildern vorausgeht (siehe Kapitel VI, 2a), kurz dargestellt. Bonn, den 15. August 1963 ERNST PESCHL, KARL WILHELM BAUER 7 I. Über die Bedeutung der vorliegenden Differentialgleichung Im folgenden wird die Lösung der nichtlinearen Differentialgleichung 2. Ord nung (f=f(oc" ff" -_n _f'2 + 2n+ 1 Li' _ eR + 2 L')f -~=O (1) 2n - 1 2n - 1 n 2n - 1 bei vorgegebenem L (oc) =co +ClOC, Co, Cl beliebig konstant, behandelt. Dabei ist R eine negative Konstante, während n positive halb- bzw. ganzzahlige Werte annimmt.

Sommario

I. Über die Bedeutung der vorliegenden Differentialgleichung.- II Übergang zu einem Differentialgleichungssystem.- III. Behandlung des Falles L(?) = c0.- 1. c0 = 0.- 2. c0 ? 0.- IV. Behandlung des Falles L (?) = c0 + c1?, (c0 ? 0).- 1. Der Zusammenhang mit der hypergeometrischen Differentialgleichung.- 2. n halbzahlig (? $$% MathType!MTEF!2!1!+-% feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8% qacqGHLjYSdaWcaaWdaeaapeGaaG4maaWdaeaapeGaaGOmaaaaaaa!399A! geqslant frac{3}{2}$$.- 3. n ganzzahlig (? 1).- V. Zusammenstellung der Lösungen.- VI. Kurvenverlauf für einige Lösungen in den Fällen n = 1, $$% MathType!MTEF!2!1!+-% feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8% qadaWcaaWdaeaapeGaaG4maaWdaeaapeGaaGOmaaaaaaa!37D4!frac{3}{2}$$, 2.- 1. Explizite Bestimmung der Lösungen und Kurvendiskussion im Falle.- 2. Instrumentelle Darstellung der Lösungskurven.

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.