Fr. 70.00

Metric Diffusion Along Foliations

Anglais · Livre de poche

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

Up-to-date research in metric diffusion along compact foliations is presented in this book. Beginning with fundamentals from the optimal transportation theory and the theory of foliations; this book moves on to cover Wasserstein distance, Kantorovich Duality Theorem, and the metrization of the weak topology by the Wasserstein distance. Metric diffusion is defined, the topology of the metric space is studied and the limits of diffused metrics along compact foliations are discussed. Essentials on foliations, holonomy, heat diffusion, and compact foliations are detailed and vital technical lemmas are proved to aide understanding.

Graduate students and researchers in geometry, topology and dynamics of foliations and laminations will find this supplement useful as it presents facts about the metric diffusion along non-compact foliation and provides a full description of the limit for metrics diffused along foliation with at least one compact leaf on the two dimensions.

Table des matières

1. Wasserstein distance.- 2. Foliations and heat diffusion.- 3. Compact foliations.- 4. Metric diffusion.- 5. Metric diffusion for non-compact foliations.

Résumé

Up-to-date research in metric diffusion along compact foliations is presented in this book. Beginning with fundamentals from the optimal transportation theory and the theory of foliations; this book moves on to cover Wasserstein distance, Kantorovich Duality Theorem, and the metrization of the weak topology by the Wasserstein distance. Metric diffusion is defined, the topology of the metric space is studied and the limits of diffused metrics along compact foliations are discussed. Essentials on foliations, holonomy, heat diffusion, and compact foliations are detailed and vital technical lemmas are proved to aide understanding.

Graduate students and researchers in geometry, topology and dynamics of foliations and laminations will find this supplement useful as it presents facts about the metric diffusion along non-compact foliation and provides a full description of the limit for metrics diffused along foliation with at least one compact leaf on the two dimensions.

Texte suppl.

“The present book is a beautiful sample of results that can be proved on foliated manifolds by the theory of metric diffusion. … Graduate students and researchers in geometry, topology and dynamics of foliations will find this book especially valuable as it presents facts about the metric diffusion at the cutting edge of research.” (Glen E. Wheeler, Mathematical Reviews, May, 2018)

Commentaire

"The present book is a beautiful sample of results that can be proved on foliated manifolds by the theory of metric diffusion. ... Graduate students and researchers in geometry, topology and dynamics of foliations will find this book especially valuable as it presents facts about the metric diffusion at the cutting edge of research." (Glen E. Wheeler, Mathematical Reviews, May, 2018)

Détails du produit

Auteurs Szymon M Walczak, Szymon M. Walczak
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 30.06.2017
 
EAN 9783319575162
ISBN 978-3-31-957516-2
Pages 55
Dimensions 157 mm x 235 mm x 6 mm
Poids 124 g
Illustrations XI, 55 p. 19 illus.
Thèmes SpringerBriefs in Mathematics
SpringerBriefs in Mathematics
Catégories Sciences naturelles, médecine, informatique, technique > Mathématiques > Géométrie

C, Differentielle und Riemannsche Geometrie, Mathematics and Statistics, Topology, Differential Geometry, Differential & Riemannian geometry, Differential and Riemannian geometry, Harmonic measures, Optimal Transportation Problem

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.