Fr. 70.00

Marginal Space Learning for Medical Image Analysis - Efficient Detection and Segmentation of Anatomical Structures

Anglais · Livre de poche

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

Automatic detection and segmentation of anatomical structures in medical images are prerequisites to subsequent image measurements and disease quantification, and therefore have multiple clinical applications. This book presents an efficient object detection and segmentation framework, called Marginal Space Learning, which runs at a sub-second speed on a current desktop computer, faster than the state-of-the-art. Trained with a sufficient number of data sets, Marginal Space Learning is also robust under imaging artifacts, noise and anatomical variations. The book showcases 35 clinical applications of Marginal Space Learning and its extensions to detecting and segmenting various anatomical structures, such as the heart, liver, lymph nodes and prostate in major medical imaging modalities (CT, MRI, X-Ray and Ultrasound), demonstrating its efficiency and robustness.

Table des matières

Introduction.- Marginal Space Learning.- Comparison of Marginal Space Learning and Full Space Learning in 2D.- Constrained Marginal Space Learning.- Part-Based Object Detection and Segmentation.- Optimal Mean Shape for Nonrigid Object Detection and Segmentation.- Nonrigid Object Segmentation: Application to Four-Chamber Heart Segmentation.- Applications of Marginal Space Learning in Medical Imaging.- Conclusions and Future Work.

Résumé

Automatic detection and segmentation of anatomical structures in medical images are prerequisites to subsequent image measurements and disease quantification, and therefore have multiple clinical applications. This book presents an efficient object detection and segmentation framework, called Marginal Space Learning, which runs at a sub-second speed on a current desktop computer, faster than the state-of-the-art. Trained with a sufficient number of data sets, Marginal Space Learning is also robust under imaging artifacts, noise and anatomical variations. The book showcases 35 clinical applications of Marginal Space Learning and its extensions to detecting and segmenting various anatomical structures, such as the heart, liver, lymph nodes and prostate in major medical imaging modalities (CT, MRI, X-Ray and Ultrasound), demonstrating its efficiency and robustness.

Texte suppl.

“This book presents a generic learning-based method for efficient 3D object detection called marginal space learning (MSL). … Each chapter ends with a remarkable bibliography on the topics covered. This book is suited for students and researchers with interest in medical image analysis.” (Oscar Bustos, zbMATH 1362.92004, 2017)

Commentaire

"This book presents a generic learning-based method for efficient 3D object detection called marginal space learning (MSL). ... Each chapter ends with a remarkable bibliography on the topics covered. This book is suited for students and researchers with interest in medical image analysis." (Oscar Bustos, zbMATH 1362.92004, 2017)

Détails du produit

Auteurs Dorin Comaniciu, Yefen Zheng, Yefeng Zheng
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 01.01.2016
 
EAN 9781493955756
ISBN 978-1-4939-5575-6
Pages 268
Dimensions 235 mm x 277 mm x 17 mm
Poids 441 g
Illustrations XX, 268 p. 122 illus., 58 illus. in color.
Catégories Sciences naturelles, médecine, informatique, technique > Informatique, ordinateurs > Applications, programmes

B, Künstliche Intelligenz, Artificial Intelligence, Radiology, Bildgebende Verfahren, ULTRASOUND, computer science, Computer Imaging, Vision, Pattern Recognition and Graphics, Imaging / Radiology, Optical data processing, Medical imaging, medical image analysis, Object detection, Medical Image Segmentation, marginal space learning, organ segmentation

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.