Fr. 104.00

Ergodic Theory and Negative Curvature - CIRM Jean-Morlet Chair, Fall 2013

Anglais · Livre de poche

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

Focussing on the mathematics related to the recent proof of ergodicity of the (Weil-Petersson) geodesic flow on a nonpositively curved space whose points are negatively curved metrics on surfaces, this book provides a broad introduction to an important current area of research. It offers original textbook-level material suitable for introductory or advanced courses as well as deep insights into the state of the art of the field, making it useful as a reference and for self-study.
The first chapters introduce hyperbolic dynamics, ergodic theory and geodesic and horocycle flows, and include an English translation of Hadamard's original proof of the Stable-Manifold Theorem. An outline of the strategy, motivation and context behind the ergodicity proof is followed by a careful exposition of it (using the Hopf argument) and of the pertinent context of Teichmüller theory. Finally, some complementary lectures describe the deep connections between geodesic flows in negative curvature and Diophantine approximation.

Table des matières

Boris Hasselblatt: Preface.- Boris Hasselblatt: Introduction to Hyperbolic Dynamics and Ergodic Theory.- Jacques Hadamard: On iteration and asymptotic solutions of differential equations (translated by Boris Hasselblatt).- Barbara Schapira: Dynamics of Geodesic and Horocyclic Flows.- Keith Burns, Howard Masur, Amie Wilkinson: Ergodicity of the Weil-Petersson Geodesic Flow.- Keith Burns, Howard Masur, Carlos Matheus and Amie Wilkinson: Ergodicity of Geodesic Flows on Incomplete Negatively Curved Manifolds.-Carlos Matheus: The Dynamics of the Weil-Petersson flow.- Jouni Parkkonen, Fre de ric Paulin: A survey of some Arithmetic Applications of Ergodic Theory in Negative Curvature.



Résumé

Focussing on the mathematics related to the recent proof of ergodicity of the (Weil–Petersson) geodesic flow on a nonpositively curved space whose points are negatively curved metrics on surfaces, this book provides a broad introduction to an important current area of research. It offers original textbook-level material suitable for introductory or advanced courses as well as deep insights into the state of the art of the field, making it useful as a reference and for self-study. 
The first chapters introduce hyperbolic dynamics, ergodic theory and geodesic and horocycle flows, and include an English translation of Hadamard's original proof of the Stable-Manifold Theorem. An outline of the strategy, motivation and context behind the ergodicity proof is followed by a careful exposition of it (using the Hopf argument) and of the pertinent context of Teichmüller theory. Finally, some complementary lectures describe the deep connections between geodesic flows in negative curvature and Diophantine approximation.

Détails du produit

Collaboration Bori Hasselblatt (Editeur), Boris Hasselblatt (Editeur)
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 01.01.2017
 
EAN 9783319430584
ISBN 978-3-31-943058-4
Pages 328
Dimensions 160 mm x 234 mm x 18 mm
Poids 514 g
Illustrations VII, 328 p. 68 illus., 17 illus. in color.
Thèmes Lecture Notes in Mathematics
Lecture Notes in Mathematics
Catégories Sciences naturelles, médecine, informatique, technique > Mathématiques > Analyse

B, Dynamics, Mathematics and Statistics, Differential Geometry, Dynamical Systems and Ergodic Theory, Ergodic theory, Dynamical systems, Differential & Riemannian geometry

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.