Fr. 70.00

Extremal Polynomials and Riemann Surfaces

Anglais · Livre de poche

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

The problems of conditional optimization of the uniform (or C-) norm for polynomials and rational functions arise in various branches of science and technology. Their numerical solution is notoriously difficult in case of high degree functions. The book develops the classical Chebyshev's approach which gives analytical representation for the solution in terms of Riemann surfaces. The techniques born in the remote (at the first glance) branches of mathematics such as complex analysis, Riemann surfaces and Teichmüller theory, foliations, braids, topology are applied to approximation problems.
The key feature of this book is the usage of beautiful ideas of contemporary mathematics for the solution of applied problems and their effective numerical realization. This is one of the few books where the computational aspects of the higher genus Riemann surfaces are illuminated. Effective work with the moduli spaces of algebraic curves provides wide opportunities for numerical experiments in mathematics and theoretical physics.

Table des matières

1 Least deviation problems.- 2 Chebyshev representation of polynomials.- 3 Representations for the moduli space.- 4 Cell decomposition of the moduli space.- 5 Abel's equations.- 6 Computations in moduli spaces.- 7 The problem of the optimal stability polynomial.- Conclusion.- References.

A propos de l'auteur










The author is working in the field of complex analysis, Riemann surfaces and moduli, optimization of numerical algorithms, mathematical physics. He was awarded the S.Kowalewski Prize in 2009 by the Russian Academy of Sciences

Résumé

The problems of conditional optimization of the uniform (or C-) norm for polynomials and rational functions arise in various branches of science and technology. Their numerical solution is notoriously difficult in case of high degree functions. The book develops the classical Chebyshev's approach which gives analytical representation for the solution in terms of Riemann surfaces. The techniques born in the remote (at the first glance) branches of mathematics such as complex analysis, Riemann surfaces and Teichmüller theory, foliations, braids, topology are applied to  approximation problems.  
The key feature of this book is the usage of beautiful ideas of contemporary mathematics for the solution of applied problems and their effective numerical realization. This is one of the few books  where the computational aspects of the higher genus Riemann surfaces are illuminated. Effective work with the moduli spaces of algebraic curves provides wide opportunities for numerical experiments in mathematics and theoretical physics.

Texte suppl.

From the reviews:
“This book develops the classical Chebyshev approach to optimization problems in polynomial spaces. This approach yields an analytical representation for the solution in terms of Riemann surfaces. The text includes numerous problems, exercises, and illustrations. … In this book, methods from various areas of mathematics are used. … It has more than 150 pages throughout which the author makes a lot of effort to give as many results as possible, and yet provide lots of details to make the reading easier.” (Konstantin Malyutin, Zentralblatt MATH, Vol. 1252, 2012)

Commentaire

From the reviews:
"This book develops the classical Chebyshev approach to optimization problems in polynomial spaces. This approach yields an analytical representation for the solution in terms of Riemann surfaces. The text includes numerous problems, exercises, and illustrations. ... In this book, methods from various areas of mathematics are used. ... It has more than 150 pages throughout which the author makes a lot of effort to give as many results as possible, and yet provide lots of details to make the reading easier." (Konstantin Malyutin, Zentralblatt MATH, Vol. 1252, 2012)

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.