Fr. 250.00

NMR Spectroscopy Explained - Simplified Theory, Applications Examples for Organic Chemistry

English · Hardback

Shipping usually within 3 to 5 weeks

Description

Read more

Zusatztext 1600 ursprüngliche Gasthäuser zwischen Alpen undätna. Italien ist nochimmer das Traumland zahlloser kulinarischer Freuden. Wer nicht nur Grappa!Wein und Pasta unverfälscht genießen möchte! sollte den Führer zu den schönstenOsterie d'Italia stets im Reisegepäck haben. Die neueste Ausgabe des Führersdurch die traditionellen Gasthäuser zwischen Alpen undätna. Geheimtipsfür Slow Food-Genießer. Die 1600 schönsten Gasthäuser Italiens zwischenBozen und Palermo. Die neue Ausgabe der Osterie d'Italia: Die schönstenGasthäuser Italiens zwischen Bozen und Palermo. Jetzt mit Lokalen in denAlpen und Apenninen und zahlreichen Einkaufstips und Adressen für italienischeSpezialitäten. Herzliche Gastlichkeit! familiäres Ambiente! traditionelleKüche! solide Weine und dabei anständige Preise sind die Kennzeichen derechten Osterie d'Italia. Das Handbuch informiertüber ihre Lage! ihre Besitzerund ihre oft lange Geschichte.übersichtskarten! Angabenüberöffnungszeiten!Preise und ein umfangreiches italienisch-deutsches Glossar erleichterndie Orientierung. Wer nicht nur Grappa! Wein und Pasta unverfälscht genießenmöchte! sollte den Führer zu den schönsten Osterie d'Italia stets im Reisegepäckhaben. Informationen zum Autor Neil E. Jacobsen, PHD, is the NMR Facility Manager in the Department of Chemistry at the University of Arizona in Tucson, where he also teaches graduate-level NMR courses. He received his PhD in organic chemistry at the University of California-Berkeley and gained experience in protein NMR spectroscopy at the University of Washington and at Genentech, Inc. Klappentext A STEP-BY-STEP APPROACH TO UNDERSTANDING NMR SPECTROSCOPYUsed in concert with complementary analytical techniques such as light spectroscopy and mass spectrometry, Nuclear Magnetic Resonance (NMR) spectroscopy is the most powerful tool for the determination of organic structure. This book fosters a real-world understanding of NMR spectroscopy and how it works without burying the reader in technical details and physical and mathematical formalism. With an accessible, clear style and approach, NMR Spectroscopy Explained:*Introduces readers to modern NMR spectroscopy as it is applied to the analysis of organic compounds and biomolecules*Minimizes complicated theory and focuses on the practical aspects of NMR spectroscopy*Provides comprehensive coverage of how NMR spectroscopy experiments actually work and how to optimize them on the spectrometer*Provides examples of every experiment, with detailed interpretation of data*Presents essential descriptive theory in mainly nonmathematical termsThe guide starts with a basic model and expands it one step at a time, complete with experiments and examples, helping readers who are not experts in physics or physical chemistry to develop an empowering understanding of even the most complex biological NMR spectroscopy techniques. It is an ideal reference for professionals in industry and academia who use NMR spectroscopy technology, NMR facility managers, and upper-level undergraduates and graduate students in organic chemistry, biochemistry, pharmacology, biophysics, and engineering. Zusammenfassung NMR Spectroscopy Explained : Simplified Theory, Applications and Examples for Organic Chemistry and Structural Biology provides a fresh, practical guide to NMR for both students and practitioners, in a clearly written and non-mathematical format. Inhaltsverzeichnis Preface xi Acknowledgments xv 1 Fundamentalsof NMR Spectroscopy in Liquids 1 1.1 Introduction to NMR Spectroscopy 1 1.2 Examples: NMR Spectroscopy of Oligosaccharides and Terpenoids 12 1.3 Typical Values of Chemical Shifts and Coupling Constants 27 1.4 Fundamental Concepts of NMR Spectroscopy 30 2 Interpretation of Proton (1 H) NMR Spectra 39 2.1 Assignment 39 2.2 Effect of ...

List of contents

Preface.
Acknowledgments.

1 Fundamentalsof NMR Spectroscopy in Liquids.

1.1 Introduction to NMR Spectroscopy.

1.2 Examples: NMR Spectroscopy of Oligosaccharides and Terpenoids.

1.3 Typical Values of Chemical Shifts and Coupling Constants.

1.4 Fundamental Concepts of NMR Spectroscopy.

2 Interpretation of Proton ( 1 H) NMR Spectra.

2.1 Assignment.

2.2 Effect of B o Field Strength on the Spectrum.

2.3 First-Order Splitting Patterns.

2.4 The Use of 1H-1H Coupling Constants to Determine Stereochemistry and Conformation.

2.5 Symmetry and Chirality in NMR.

2.6 The Origin of the Chemical Shift.

2.7 J Coupling to Other NMR-Active Nuclei.

2.8 Non-First-Order Splitting Patterns: Strong Coupling.

2.9 Magnetic Equivalence.

3 NMR Hardware and Software.

3.1 Sample Preparation.

3.2 Sample Insertion.

3.3 The Deuterium Lock Feedback Loop.

3.4 The Shim System.

3.5 Tuning and Matching the Probe.

3.6 NMR Data Acquisition and Acquisition Parameters.

3.7 Noise and Dynamic Range.

3.8 Special Topic: Oversampling and Digital Filtering.

3.9 NMR Data Processing-Overview.

3.10 The Fourier Transform.

3.11 Data Manipulation Before the Fourier Transform.

3.12 Data Manipulation After the Fourier Transform.

4 Carbon-13 ( 13 C) NMR Spectroscopy.

4.1 Sensitivity of 13 C.

4.2 Splitting of 13 C Signals.

4.3 Decoupling.

4.4 Heteronuclear Decoupling: 1 H Decoupled 13C Spectra.

4.5 Decoupling Hardware.

4.6 Decoupling Software: Parameters.

4.7 The Nuclear Overhauser Effect (NOE).

4.8 Heteronuclear Decoupler Modes.

5 NMR Relaxation-Inversion-Recovery and the Nuclear Overhauser Effect (NOE).

5.1 The Vector Model.

5.2 One Spin in a Magnetic Field.

5.3 A Large Population of Identical Spins: Net Magnetization.

5.4 Coherence: Net Magnetization in the x - y Plane.

5.5 Relaxation.

5.6 Summary of the Vector Model.

5.7 Molecular Tumbling and NMR Relaxation.

5.8 Inversion-Recovery: Measurement of T 1 Values.

5.9 Continuous-Wave Low-Power Irradiation of One Resonance.

5.10 Homonuclear Decoupling.

5.11 Presaturation of Solvent Resonance.

5.12 The Homonuclear Nuclear Overhauser Effect (NOE).

5.13 Summary of the Nuclear Overhauser Effect.

6 The Spin Echo and the Attached Proton Test (APT).

6.1 The Rotating Frame of Reference.

6.2 The Radio Frequency (RF) Pulse.

6.3 The Effect of RF Pulses.

6.4 Quadrature Detection, Phase Cycling, and the Receiver Phase.

6.5 Chemical Shift Evolution.

6.6 Scalar ( J ) Coupling Evolution.

6.7 Examples of J -coupling and Chemical Shift Evolution.

6.8 The Attached Proton Test (APT).

6.9 The Spin Echo.

6.10 The Heteronuclear Spin Echo: Controlling J -Coupling Evolution and Chemical Shift Evolution.

7 Coherence Transfer: INEPT and DEPT.

7.1 Net Magnetization.

7.2 Magnetization Transfer.

7.3 The Product Operator Formalism: Introduction.

7.4 Single Spin Product Operators: Chemical Shift Evolution.

7.5 Two-Spin Operators: J -coupling Evolution and Antiphase Coherence.

7.6 The Effect of RF Pulses on Product Operators.

7.7 INEPT and the Transfer of Magnetization from 1 H to 13 C.

7.8 Selective Population Transfer (SPT) as a Way of Understanding INEPT Coherence Transfer.

7.9 Phase Cycling in INEPT.

7.10 Intermediate States in Coherence Transfer.

7.11 Zero- and Double-Quantum Operators.

7.12 Summary of Two-Spin Operators.

7.13 Refocused INEPT: Adding Spectral Editing.

7.14 DEPT: Distortionless Enhancement by Polarization Transfer.

7.15 Product Operator Analysis of the DEPT Experiment.

8 Shaped Pulses, Pulsed Field Gradients, and Spin Locks: Selective 1D NOE and 1D TOCSY.

8.1 Introducing Three New Pulse Sequence Tools.

8.2 The Effect of Off-Resonance Pulses on Net Magnetization.

8.3 The Excitation Profile for Rectangular Pulses.

8.4 Selective Pulses and Shaped Pulses.

8.5 Pulsed Field Gradients.

8.6 Combining Sha

Report

"The uses of the many modern multiple NMW techniques are explained and demonstrated quite well." ( CHOICE , September 2008)

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.