Fr. 69.00

Compressive Force-Path Method - Unified Ultimate Limit-State Design of Concrete Structures

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

This book presents a method which simplifies and unifies the design of reinforced concrete (RC) structures and is applicable to any structural element under both normal and seismic loading conditions. The proposed method has a sound theoretical basis and is expressed in a unified form applicable to all structural members, as well as their connections. It is applied in practice through the use of simple failure criteria derived from first principles without the need for calibration through the use of experimental data. The method is capable of predicting not only load-carrying capacity but also the locations and modes of failure, as well as safeguarding the structural performance code requirements.
In this book, the concepts underlying the method are first presented for the case of simply supported RC beams. The application of the method is progressively extended so as to cover all common structural elements. For each structural element considered, evidence of the validity of the proposed method is presented together with design examples and comparisons with current code specifications. The method has been found to produce design solutions which satisfy the seismic performance requirements of current codes in all cases investigated to date, including structural members such as beams, columns, and walls, beam-to-beam or column-to-column connections, and beam-to-column joints.

List of contents

Reappraisal of concepts underlying reinforced concrete design.- The concept of the compressive-force path.- Modelling of simply-supported beams.- Design of simply supported beams.- Design for punching of flat slabs.- Design of skeletal structures with beam-like elements.- Earthquake-resistant design.- Design examples.

Summary

This book presents a method which simplifies and unifies the design of reinforced concrete (RC) structures and is applicable to any structural element under both normal and seismic loading conditions. The proposed method has a sound theoretical basis and is expressed in a unified form applicable to all structural members, as well as their connections. It is applied in practice through the use of simple failure criteria derived from first principles without the need for calibration through the use of experimental data. The method is capable of predicting not only load-carrying capacity but also the locations and modes of failure, as well as safeguarding the structural performance code requirements.
In this book, the concepts underlying the method are first presented for the case of simply supported RC beams. The application of the method is progressively extended so as to cover all common structural elements. For each structural element considered, evidence of the validity of the proposed method is presented together with design examples and comparisons with current code specifications. The method has been found to produce design solutions which satisfy the seismic performance requirements of current codes in all cases investigated to date, including structural members such as beams, columns, and walls, beam-to-beam or column-to-column connections, and beam-to-column joints.

Product details

Authors Michael D Kotsovos
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 17.10.2013
 
EAN 9783319004877
ISBN 978-3-31-900487-7
No. of pages 221
Dimensions 160 mm x 19 mm x 238 mm
Weight 523 g
Illustrations XVI, 221 p. 191 illus.
Series Engineering Materials
Subjects Natural sciences, medicine, IT, technology > Technology > Structural and environmental engineering

B, Building, Construction, engineering, Building Construction and Design, Materials science, Structural engineering, Heating, lighting, ventilation, Engineering, Architectural, Buildings—Design and construction, Structural Materials, Building construction & materials, Building Materials

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.