Fr. 136.00

Data Clustering With Python - From Theory to Implementation

English · Hardback

Shipping usually within 3 to 5 weeks

Description

Read more










Ideal for anyone interested in clustering algorithms, with no prior Python experience required.

List of contents










1. Python Programming 101. 2. The NumPy Library. 3. The Pandas Library. 4. The Matplotlib Library. 5. Introduction to Data Clustering. 6. Agglomerative Hierarchical Algorithms. 7. DIANA. 8. The k-means Algorithm. 9. The c-means Algorithm. 10. The k-prototypes Algorithm. 11. The Genetic k-modes Algorithm. 12. The FSC Algorithm. 13. The Gaussian Mixture Algorithm. 14 The KMTD Algorithm. 15. The Probability Propagation Algorithm. 16. A Spectral Clustering Algorithm. 17. A Mean-Shift Algorithm.


About the author










Guojun Gan is an Associate Professor in the Department of Mathematics at the University of Connecticut, where he has been since August 2014. Prior to that, he worked at a large life insurance company in Toronto, Canada for six years and a hedge fund in Oakville, Canada for one year. He earned a BS degree from Jilin University, Changchun, China, in 2001 and MS and PhD degrees from York University, Toronto, Canada, in 2003 and 2007, respectively.


Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.