Fr. 134.00

Analytic Solutions for Flows Through Cascades

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This thesis is concerned with flows through cascades, i.e. periodic arrays of obstacles. Such geometries are relevant to a range of physical scenarios, chiefly the aerodynamics and aeroacoustics of turbomachinery flows. Despite the fact that turbomachinery is of paramount importance to a number of industries, many of the underlying mechanisms in cascade flows remain opaque. In order to clarify the function of different physical parameters, the author considers six separate problems. For example, he explores the significance of realistic blade geometries in predicting turbomachinery performance, and the possibility that porous blades can achieve noise reductions. In order to solve these challenging problems, the author deploys and indeed develops techniques from across the spectrum of complex analysis: the Wiener-Hopf method, Riemann-Hilbert problems, and the Schottky-Klein prime function all feature prominently. These sophisticated tools are then used to elucidate the underlying mathematical and physical structures present in cascade flows. The ensuing solutions greatly extend previous works and offer new avenues for future research. The results are not of simply academic value but are also useful for aircraft designers seeking to balance aeroacoustic and aerodynamic effects.

List of contents

Introduction.-  Potential Flow Through Cascades of Thin, Impermeable Aerofoils.- Scattering by Cascades of Aerofoils with Realistic Geometry.- Potential Flow Through Cascades of Thin, Porous Aerofoils.- Scattering by Cascades of Aerofoils with Complex Boundary Conditions.- Potential Flow Through Cascades with Multiple Aerofoils per Period.- The Quasi-Periodic Compact Green's Function.- Conclusion.

About the author










Dr Peter J. Baddoo is an Instructor of Applied Mathematics at MIT. Previously he was an EPSRC Doctoral Prize Fellow at Imperial College London. He recieved a PhD in Applied Mathematics from the University of Cambridge and an MMath from the University of Oxford. His research interests lie in the applications of complex analysis and data-driven techniques to tackle physical problems, such as those arising in fluid dynamics. He is the recipient of several prizes, including "Best Paper" awards from the AIAA and ICA, as well as an Early Career Fellowship from the London Mathematical Society.

Product details

Authors Peter Jonathan Baddoo
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 15.09.2021
 
EAN 9783030557836
ISBN 978-3-0-3055783-6
No. of pages 258
Dimensions 155 mm x 15 mm x 235 mm
Illustrations XVI, 258 p. 75 illus., 61 illus. in color.
Series Springer Theses
Subject Natural sciences, medicine, IT, technology > Physics, astronomy > Theoretical physics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.