Fr. 134.00

Electrical and Optoelectronic Properties of the Nanodevices Composed of Two-Dimensional Materials - Graphene and Molybdenum (IV) Disulfide

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This thesis focuses on the transport and magneto-transport properties of graphene p-n-p junctions, such as the pronounced quantum Hall effect, a well-defined plateau-plateau transition point, and scaling behavior. In addition, it demonstrates persistent photoconductivity (PPC) in the monolayer MoS2 devices, an effect that can be attributed to random localized potential fluctuations in the devices.
Further, it studies scaling behavior at zeroth Landau level and high performance of fractional values of quantum Hall plateaus in these graphene p-n-p devices. Moreover, it demonstrates a unique and efficient means of controlling the PPC effect in monolayer MoS2. This PPC effect may offer novel functionalities for MoS2-based optoelectronic applications in the future.

List of contents

Introduction.- Theoretical background.- Experimental methods.- Distinctive magnetotransport of graphene p-n-p junctions via resist-free fabrication and controlled diffusion of metallic contact.- Observation of quantum Hall plateau-plateau transition and scaling behavior of the zeroth Landau level in graphene p-n-p junction.- Extrinsic Origin of Persistent Photoconductivity in Monolayer MoS2 Field Effect.- Conclusion.

About the author










Cheng-Hua Liu graduated from National Taiwan University with a major in Physics. He obtained his Ph.D. in May 2016. His research projects involve investigations on the graphene p-n-p junction and the MoS2 thin-film transistor using the resistor-free fabrication method. His main project is based in Prof. Chi-Te Liang's lab at National Taiwan University and Wei-Hua Wang's lab at the Institute of Atomic and Molecular Sciences.


Product details

Authors Cheng-Hua Liu
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 30.09.2019
 
EAN 9789811346170
ISBN 978-981-1346-17-0
No. of pages 74
Dimensions 155 mm x 5 mm x 235 mm
Weight 152 g
Illustrations XIII, 74 p. 49 illus., 42 illus. in color.
Series Springer Theses
Springer Theses
Subject Natural sciences, medicine, IT, technology > Physics, astronomy > Atomic physics, nuclear physics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.