Fr. 134.00

Ti-Sb-Te Phase Change Materials: Component Optimisation, Mechanism and Applications

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This book introduces a novel Ti-Sb-Te alloy for high-speed and low-power phase-change memory applications, which demonstrates a phase-change mechanism that differs significantly from that of conventional Ge2Sb2Te5 and yields favorable overall performance. Systematic methods, combined with better material characteristics, are used to optimize the material components and device performance. Subsequently, a phase-change memory chip based on the optimized component is successfully fabricated using 40-nm complementary metal-oxide semiconductor technology, which offers a number of advantages in many embedded applications.

List of contents

Acknowledge.- Abstract.- Introduction.- Component Optimization of Sb-Te in Ti-Sb-Te Phase Change Materials.- Component Optimization of Ti in Ti-Sb2Te3 Phase Change Materials.- Optimization Component Ti0.43Sb2Te3.- Influence of Temperature on Performance of Ti0.43Sb2Te3 Based Device.- Phase Change Mechanism of Ti0.43Sb2Te3 Alloy.- Ti0.43Sb2Te3 Based Phase Change Memory Chip.- Summary.- References.- Published Papers and Patents.- Bibliography.

About the author










Min Zhu received his B.Sc. in Electronics Science and Technology from Hubei University, China in 2009, and completed his Ph.D. in Microelectronics and Solid-State Electronics at Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences in 2014. His major research project in Prof. Zhitang Song's group concerned a Ti-Sb-Te alloy for high-speed and low-power phase change memory. Subsequently, he received an Alexander von Humboldt Research Fellowship and became a post-doctoral fellow working with Prof. Matthias Wuttig at RWTH Aachen University, investigating the crystallization behavior of phase change materials.


Summary

This book introduces a novel Ti-Sb-Te alloy for high-speed and low-power phase-change memory applications, which demonstrates a phase-change mechanism that differs significantly from that of conventional Ge2Sb2Te5 and yields favorable overall performance. Systematic methods, combined with better material characteristics, are used to optimize the material components and device performance. Subsequently, a phase-change memory chip based on the optimized component is successfully fabricated using 40-nm complementary metal-oxide semiconductor technology, which offers a number of advantages in many embedded applications.

Product details

Authors Min Zhu
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2018
 
EAN 9789811351235
ISBN 978-981-1351-23-5
No. of pages 124
Dimensions 156 mm x 236 mm x 9 mm
Weight 226 g
Illustrations XVI, 124 p. 83 illus.
Series Springer Theses
Springer Theses
Subject Natural sciences, medicine, IT, technology > Physics, astronomy > Atomic physics, nuclear physics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.