Fr. 69.00

Gravitational Wave Astrophysics with Pulsar Timing Arrays

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This Ph.D. thesis from the University of Birmingham UK opens new research avenues in the use of Pulsar Timing Arrays (PTAs) to study populations of super-massive black hole binaries through gravitational-wave observations. Chiara Mingarelli's work has shown for the first time that PTAs can yield information about the non-linear dynamics of the gravitational field. This is possible because PTAs capture, at the same time, radiation from the same source emitted at stages of its binary evolution that are separated by thousands of years. Dr. Mingarelli, who is the recipient of a Marie Curie International Outgoing Fellowship, has also been amongst the pioneers of the technique that will allow us to probe the level of anisotropy of the diffuse gravitational-wave background radiation from the whole population of super-massive black hole binaries in the Universe. Indeed, future observations will provide us with hints about the distribution of galaxies harboring massive black holes and insights into end products of hierarchical mergers of galaxies.

List of contents

Introduction.- Characterizing Gravitational Wave Stochastic Background Anisotropy with Pulsar Timing Arrays.- The Effect of Small Pulsar Distance Variations in Stochastic GW.- Observing the Dynamics of Supermassive Black Hole Binaries with Pulsar Timing.- Conclusions.- Appendix.- Bibliography.

About the author

Chiara Mingarelli received a BSc Double Honours Mathematics and Physics from Carleton University (Ottawa, Canada; 2006), an MSc in Astrophysics and Cosmology from the University of Bologna, (Bologna, Italy; 2009) and a PhD from the University of Birmingham (Birmingham, UK; 2014). She currently holds a Marie Curie International Outgoing Fellowship--a competitive 3-year prize fellowship funded by the European Union.

Summary

This Ph.D. thesis from the University of Birmingham UK opens new research avenues in the use of Pulsar Timing Arrays (PTAs) to study populations of super-massive black hole binaries through gravitational-wave observations. Chiara Mingarelli's work has shown for the first time that PTAs can yield information about the non-linear dynamics of the gravitational field. This is possible because PTAs capture, at the same time, radiation from the same source emitted at stages of its binary evolution that are separated by thousands of years.  Dr. Mingarelli, who is the recipient of a Marie Curie International Outgoing Fellowship, has also been amongst the pioneers of the technique that will allow us to probe the level of anisotropy of the diffuse gravitational-wave background radiation from the whole population of super-massive black hole binaries in the Universe. Indeed, future observations will provide us with hints about the distribution of galaxies harboring massive black holes and insights into end products of hierarchical mergers of galaxies.

Product details

Authors Chiara Mingarelli, Chiara M F Mingarelli, Chiara M. F. Mingarelli
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2015
 
EAN 9783319184005
ISBN 978-3-31-918400-5
No. of pages 119
Dimensions 156 mm x 235 mm x 7 mm
Weight 225 g
Illustrations XIX, 119 p. 20 illus., 16 illus. in color.
Series Springer Theses
Springer Theses
Subject Natural sciences, medicine, IT, technology > Physics, astronomy > Astronomy

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.