Fr. 135.00

Management of Knowledge Imperfection in Building Intelligent Systems

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

There are many good AI books. Usually they consecrate at most one or two chapters to the imprecision knowledge processing. To our knowledge this is among the few books to be entirely dedicated to the treatment of knowledge imperfection when bui- ing intelligent systems. We consider that an entire book should be focused on this important aspect of knowledge processing. The expected audience for this book - cludes undergraduate students in computer science, IT&C, mathematics, business, medicine, etc. , graduates, specialists and researchers in these fields. The subjects treated in the book include expert systems, knowledge representation, reasoning under knowledge Imperfection (Probability Theory, Possibility Theory, Belief Theory, and Approximate Reasoning). Most of the examples discussed in details throughout the book are from the medical domain. Each chapter ends with a set of carefully pe- gogically chosen exercises, which complete solution provided. Their understanding will trigger the comprehension of the theoretical notions, concepts and results. Chapter 1 is dedicated to the review of expert systems. Hence are briefly discussed production rules, structure of ES, reasoning in an ES, and conflict resolution. Chapter 2 treats knowledge representation. That includes the study of the differences between data, information and knowledge, logical systems with focus on predicate calculus, inference rules in classical logic, semantic nets and frames.

List of contents

"Classical" Expert Systems.- Knowledge Representation.- Uncertainty and Classical Theory of Probability.- Statistical Inference.- Bayesian (Belief) Networks.- Certainty Factors Theory.- Belief Theory.- Possibility Theory.- Approximate Reasoning.- Review.

Summary

There are many good AI books. Usually they consecrate at most one or two chapters to the imprecision knowledge processing. To our knowledge this is among the few books to be entirely dedicated to the treatment of knowledge imperfection when bui- ing intelligent systems. We consider that an entire book should be focused on this important aspect of knowledge processing. The expected audience for this book - cludes undergraduate students in computer science, IT&C, mathematics, business, medicine, etc. , graduates, specialists and researchers in these fields. The subjects treated in the book include expert systems, knowledge representation, reasoning under knowledge Imperfection (Probability Theory, Possibility Theory, Belief Theory, and Approximate Reasoning). Most of the examples discussed in details throughout the book are from the medical domain. Each chapter ends with a set of carefully pe- gogically chosen exercises, which complete solution provided. Their understanding will trigger the comprehension of the theoretical notions, concepts and results. Chapter 1 is dedicated to the review of expert systems. Hence are briefly discussed production rules, structure of ES, reasoning in an ES, and conflict resolution. Chapter 2 treats knowledge representation. That includes the study of the differences between data, information and knowledge, logical systems with focus on predicate calculus, inference rules in classical logic, semantic nets and frames.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.