Fr. 71.00

Tensoren und Felder

German · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Das Lehrbuch soll Studierende mit Grundkenntnissen der Differential- und Integralrechnung in die klassische Feldtheorie mit modernen mathematischen Methoden einführen. Dementsprechend ist die Tensoranalysis das mathematische Thema, das Prinzip der Relativität das physikalische. Aus didaktischen Erwägungen gliedert sich der Text in zwei Teile. Um den Leser mit den Objekten vertraut zu machen, wird zunächst der affine und euklidische Raum zugrundegelegt, um verallgemeinernd zur Geometrie auf Mannigfaltigkeiten und Riemannschen Räumen überleiten zu können. Im Anschluß an die mathematische Theorie wird in die spezielle und allgemeine Relativitätstheorie eingeführt, wobei die Geometrie der Raum-Zeit, die Grundgesetze der Elektrodynamik und der Gravitation sowie Folgerungen zur Sprache kommen.

List of contents

1 Die linearen Strukturen.- 1.1 Der lineare Vektorraum.- 1.2 Teilräume und Faktorräume.- 1.3 Lineare Abbildungen.- 1.4 Duale Vektorräume.- 1.5 Determinantenfunktionen.- 1.6 Orientierte Vektorräume.- 1.7 Euklidische Vektorräume.- 1.8 Übungsbeispiele.- 2 Tensoralgebra.- 2.1 Tensoren.- 2.2 Addition und Multiplikation.- 2.3 Darstellung der Tensoren.- 2.4 Tensoren in euklidischen Vektorräumen.- 2.5 Verjüngung.- 2.6 Tensorkoordinaten und indizierte Größen.- 2.7 Symmetrieeigenschaften von Tensoren.- 2.8 Schiefsymmetrische Tensoren.- 2.9 Duale Tensoren.- 2.10 Übungsbeispiele.- 3 Tensoren in ebenen Räumen.- 3.1 Der affine Raum.- 3.2 Skalar- und Vektorfelder.- 3.3 Tensorfelder.- 3.4 Differentiation der Tensorfelder.- 3.5 Differentialformen.- 3.6 Euklidische Räume.- 3.7 Integration der Differentialformen.- 3.8 Das Kodifferential.- 3.9 Übungsbeispiele.- 4 Spezielle Relativitätstheorie.- 4.1 Gradient, Divergenz und Rotation.- 4.2 Die Maxwellschen Gleichungen.- 4.3 Relativistische Mechanik.- 4.4 Relativistische Elektrodynamik.- 4.5 Übungsbeispiele.- 5 Tensoren in gekrümmten Räumen.- 5.1 Differenzierbare Mannigfaltigkeiten.- 5.2 Tensorfelder.- 5.3 Differentialformen.- 5.4 Integration der Differentialformen.- 5.5 Parallelverschiebung.- 5.6 Differentiation der Tensorfelder.- 5.7 Riemannsche Räume.- 5.8 Übungsbeispiele.- 6 Allgemeine Relativitätstheorie.- 6.1 Gravitation.- 6.2 Die vierdimensionale gekrümmte Welt.- 6.3 Die Newtonsche Gravitationstheorie.- 6.4 Das Einsteinsche Gravitationsgesetz.- 6.5 Das linearisierte Gravitationsgesetz. Gravitationswellen.- 6.6 Das Gravitationsfeld einer Einzelmasse.- 6.7 Schwarzschild-Geometrie.- 6.8 Übungsbeispiele.- Lösungen der Übungsbeispiele.- Literatur.

Additional text

Product details

Authors Hans J. Dirschmid, Hans Jörg Dirschmid, Hans-Jörg Dirschmid
Publisher Springer, Wien
 
Languages German
Product format Paperback / Softback
Released 01.01.1995
 
EAN 9783211827543
ISBN 978-3-211-82754-3
No. of pages 537
Dimensions 173 mm x 245 mm x 31 mm
Weight 1000 g
Illustrations VIII, 537 S. 8 Abb.
Series SpringerMathematik
SpringerMathematik
Subject Natural sciences, medicine, IT, technology > Physics, astronomy > Theoretical physics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.