Fr. 239.00

Mining Complex Data

Englisch · Fester Einband

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

The aim of this book is to gather the most recent works that address issues related to the concept of mining complex data. The whole knowledge discovery process being involved, our goal is to provide researchers dealing with each step of this process by key entries. Actually, managing complex data within the KDD process implies to work on every step, starting from the pre-processing (e.g. structuring and organizing) to the visualization and interpretation (e.g. sorting or filtering) of the results, via the data mining methods themselves (e.g. classification, clustering, frequent patterns extraction, etc.). The papers presented here are selected from the workshop papers held yearly since 2006.

Inhaltsverzeichnis

General Aspects of Complex Data.- Using Layout Data for the Analysis of Scientific Literature.- Extracting a Fuzzy System by Using Genetic Algorithms for Imbalanced Datasets Classification: Application on Down's Syndrome Detection.- A Hybrid Approach of Boosting Against Noisy Data.- Dealing with Missing Values in a Probabilistic Decision Tree during Classification.- Kernel-Based Algorithms and Visualization for Interval Data Mining.- Rules Extraction.- Evaluating Learning Algorithms Composed by a Constructive Meta-learning Scheme for a Rule Evaluation Support Method.- Mining Statistical Association Rules to Select the Most Relevant Medical Image Features.- From Sequence Mining to Multidimensional Sequence Mining.- Tree-Based Algorithms for Action Rules Discovery.- Graph Data Mining.- Indexing Structure for Graph-Structured Data.- Full Perfect Extension Pruning for Frequent Subgraph Mining.- Parallel Algorithm for Enumerating Maximal Cliques in Complex Network.- Community Finding of Scale-Free Network: Algorithm and Evaluation Criterion.- The k-Dense Method to Extract Communities from Complex Networks.- Data Clustering.- Efficient Clustering for Orders.- Exploring Validity Indices for Clustering Textual Data.

Zusammenfassung

The aim of this book is to gather the most recent works that address issues related to the concept of mining complex data. The whole knowledge discovery process being involved, our goal is to provide researchers dealing with each step of this process by key entries. Actually, managing complex data within the KDD process implies to work on every step, starting from the pre-processing (e.g. structuring and organizing) to the visualization and interpretation (e.g. sorting or filtering) of the results, via the data mining methods themselves (e.g. classification, clustering, frequent patterns extraction, etc.). The papers presented here are selected from the workshop papers held yearly since 2006.

Produktdetails

Mitarbeit Hakim Hacid (Herausgeber), Zbigniew W. Ras (Herausgeber), Shusak Tsumoto (Herausgeber), Shusaku Tsumoto (Herausgeber), Zbigniew W Ras et al (Herausgeber), Djamel A. Zighed (Herausgeber)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Fester Einband
Erschienen 31.01.2011
 
EAN 9783540880660
ISBN 978-3-540-88066-0
Seiten 302
Abmessung 155 mm x 20 mm x 235 mm
Gewicht 584 g
Illustration XII, 302 p. 114 illus.
Serien Studies in Computational Intelligence
Studies in Computational Intelligence
Themen Naturwissenschaften, Medizin, Informatik, Technik > Technik > Allgemeines, Lexika

Layout, B, Künstliche Intelligenz, Artificial Intelligence, Knowledge, Kernel, Learning, engineering, Visualization, Mathematical and Computational Engineering, Engineering mathematics, Applied mathematics, Mathematical and Computational Engineering Applications, fuzzy system, knowledge discovery, genetic algorithms, decision tree

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.