Fr. 123.00
Christian Karpfinger
Calculus and Linear Algebra in Recipes - Terms, theorems and numerous examples in short learning units
Englisch · Taschenbuch
In Neuauflage, zurzeit nicht erhältlich
Beschreibung
This book provides a clear and easy-to-understand introduction to higher mathematics with numerous examples. The author shows how to solve typical problems in a recipe-like manner and divides the material into short, easily digestible learning units.
Have you ever cooked a 3-course meal based on a recipe? That generally works quite well, even if you are not a great cook. What does this have to do with mathematics? Well, you can solve a lot of math problems recipe-wise: Need to solve a Riccati's differential equation or the singular value decomposition of a matrix? Look it up in this book, you'll find a recipe for it here. Recipes are available for problems from the field of:
· Calculus in one and more variables,
· Linear algebra,
· Vector analysis,
· Theory on differential equations, ordinary and partial,
· Theory of integral transformations,
· Function theory.
Other features of this book include:
· The division of Higher Mathematics into approximately 100 chapters of roughly equal length. Each chapter covers approximately the material of a 90-minute lecture.
· Numerous exercises and solutions
· Many problems in higher mathematics can be solved with computers. We always indicate how it works with MATLAB®.
This 2nd English edition has been completely revised and numerous examples, illustrations, explanations and further exercises have been added.
Inhaltsverzeichnis
Preface.- 1 Terminology, Symbols and Sets.- 2 The Natural Numbers, Integers and Rational Numbers.- 3 The Real Numbers.- 4 Machine Numbers.- 5 Polynomials.- 6 Trigonometric Functions.- 7 Complex Numbers Cartesian Coordinates.- 8 Complex Numbers Polar Coordinates.- 9 Linear Equation Systems.- 10 Calculating with Matrices.- 11 LR-Decomposition of a Matrix.- 12 The Determinant.- 13 Vector Spaces.- 14 Generating Systems and Linear (In-)Dependence.- 15 Bases of Vector Spaces.- 16 Orthogonality I.- 17 Orthogonality II.- 18 The Linear Least Squares Problem.- 19 The QR-Decomposition of a Matrix.- 20 Sequences.- 21 Calculation of Limits of Sequences.- 22 Series.- 23 Mappings.- 24 Power Series.- 25 Limits and Continuity.- 26 Differentiation.- 27 Applications of Differential Calculus I.-28 Applications of Differential Calculus II.- 29 Polynomial and Spline Interpolation.- 30 Integration I.- 31 Integration II.- 32 Improper Integrals.- 33 Separable and Linear First Order Differential Equations.- 34 Linear Differential Equations with Constant Coefficients.- 35 Some Special Types of Differential Equations.- 36 Numerics of Ordinary Differential Equations I.- 37 Linear Mappings and Representation Matrices.- 38 Basic Transformation.- 39 Diagonalization Eigenvalues and Eigenvectors.- 40 Numerical Calculation of Eigenvalues and Eigenvectors.- 41 Quadrics.- 42 Schur Decomposition and Singular Value Decomposition.- 43 The Jordan Normal Form I.- 44 The Jordan Normal Form II.- 45 Definiteness and Matrix Norms.- 46 Functions of Several Variables.- 47 Partial Differentiation Gradient, Hessian Matrix, Jacobian Matrix.- 48 Applications of Partial Derivatives.- 49 Determination of Extreme Values.- 50 Determination of Extreme Values under Constraints.- 51 Total Differentiation, Differential Operators.- 52 Implicit Functions.- 53 Coordinate Transformations.- 54 Curves I.- 55 Curves II.- 56 Curve Integrals.- 57 Gradient Fields.- 58 Area Integrals.- 59 The Transformation Formula.- 60 Surfaces and Surface Integrals.- 61 Integral Theorems I.- 62 Integral Theorems II.- 63 Generalities on Differential Equations.- 64 The Exact Differential Equation.- 65 Linear Differential Equations Systems I.- 66 Linear Differential Equations Systems II.- 67 Linear Differential Equations Systems III.- 68 Boundary Value Problems.- 69 Basic Concepts of Numerics.- 70 Fixed Point Iteration.- 71 Iterative Methods for Linear Equation Systems.- 72 Optimization.- 73 Numerics of Ordinary Differential Equations II.- 74 Fourier Series - Calculation of Fourier Coefficients.- 75 Fourier Series Background, Theorems and Application.- 76 Fourier Transformation I.- 77 Fourier Transformation II.- 78 Discrete Fourier Transformation.- 79 The Laplace Transformation.- 80 Holomorphic Functions.- 81 Complex Integration.- 82 Laurent Series.- 83 The Residue Calculus.- 84 Conformal Mappings.- 85 Harmonic Functions and the Dirichlet Boundary Value Problem.- 86 First Order Partial Differential Equations.- 87 Second Order Partial Differential Equations General.- 88 The Laplace or Poisson Equation.- 89 The Heat Conduction Equation.- 90 The Wave Equation.- 91 Solving pDEs with Fourier- and Laplace Transformations.- Index.
Über den Autor / die Autorin
Prof. Dr. Christian Karpfinger teaches at the Technical University of Munich; in 2004 he was awarded the State Teaching Award of the Free State of Bavaria.
Produktdetails
| Autoren | Christian Karpfinger |
| Verlag | Springer, Berlin |
| Sprache | Englisch |
| Produktform | Taschenbuch |
| Erscheint | 05.04.2026 |
| EAN | 9783662726228 |
| ISBN | 978-3-662-72622-8 |
| Illustration | Approx. 1000 p. 243 illus. |
| Themen |
Naturwissenschaften, Medizin, Informatik, Technik
> Mathematik
> Arithmetik, Algebra
Analysis, MATLAB, exam preparation, Mathematische Analysis, allgemein, Linear Algebra, Differential equations, Engineering mathematics, numerics, Mathematics for user |
Kundenrezensionen
Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.
Schreibe eine Rezension
Top oder Flop? Schreibe deine eigene Rezension.